scholarly journals Mitotic Phosphorylation Prevents the Binding of HMGN Proteins to Chromatin

2001 ◽  
Vol 21 (15) ◽  
pp. 5169-5178 ◽  
Author(s):  
Marta Prymakowska-Bosak ◽  
Tom Misteli ◽  
Julio E. Herrera ◽  
Hitoshi Shirakawa ◽  
Yehudit Birger ◽  
...  

ABSTRACT Condensation of the chromatin fiber and transcriptional inhibition during mitosis is associated with the redistribution of many DNA- and chromatin-binding proteins, including members of the high-mobility-group N (HMGN) family. Here we study the mechanism governing the organization of HMGN proteins in mitosis. Using site-specific antibodies and quantitative gel analysis with proteins extracted from synchronized HeLa cells, we demonstrate that, during mitosis, the conserved serine residues in the nucleosomal binding domain (NBD) of this protein family are highly and specifically phosphorylated. Nucleosome mobility shift assays with both in vitro-phosphorylated proteins and with point mutants bearing negative charges in the NBD demonstrate that the negative charge abolishes the ability of the proteins to bind to nucleosomes. Fluorescence loss of photobleaching demonstrates that, in living cells, the negative charge in the NBD increases the intranuclear mobility of the protein and significantly decreases the relative time that it is bound to chromatin. Expression of wild-type and mutant proteins inHmgN1 −/− cells indicates that the negatively charged protein is not bound to chromosomes. We conclude that during mitosis the NBD of HMGN proteins is highly phosphorylated and that this modification regulates the interaction of the proteins with chromatin.

2002 ◽  
Vol 22 (19) ◽  
pp. 6809-6819 ◽  
Author(s):  
Marta Prymakowska-Bosak ◽  
Robert Hock ◽  
Frédéric Catez ◽  
Jae-Hwan Lim ◽  
Yehudit Birger ◽  
...  

ABSTRACT Progression through mitosis is associated with reversible phosphorylation of many nuclear proteins including that of the high-mobility group N (HMGN) nucleosomal binding protein family. Here we use immunofluorescence and in vitro nuclear import studies to demonstrate that mitotic phosphorylation of the nucleosomal binding domain (NBD) of the HMGN1 protein prevents its reentry into the newly formed nucleus in late telophase. By microinjecting wild-type and mutant proteins into the cytoplasm of HeLa cells and expressing these proteins in HmgN1 −/− cells, we demonstrate that the inability to enter the nucleus is a consequence of phosphorylation and is not due to the presence of negative charges. Using affinity chromatography with recombinant proteins and nuclear extracts prepared from logarithmically growing or mitotically arrested cells, we demonstrate that phosphorylation of the NBD of HMGN1 promotes interaction with specific 14.3.3 isotypes. We conclude that mitotic phosphorylation of HMGN1 protein promotes interaction with 14.3.3 proteins and suggest that this interaction impedes the reentry of the proteins into the nucleus during telophase. Taken together with the results of previous studies, our results suggest a dual role for mitotic phosphorylation of HMGN1: abolishment of chromatin binding and inhibition of nuclear import.


1998 ◽  
Vol 18 (12) ◽  
pp. 7009-7019 ◽  
Author(s):  
Rekha C. Patel ◽  
Ganes C. Sen

ABSTRACT The roles of protein dimerization and double-stranded RNA (dsRNA) binding in the biochemical and cellular activities of PKR, the dsRNA-dependent protein kinase, were investigated. We have previously shown that both properties of the protein are mediated by the same domain. Here we show that dimerization is mediated by hydrophobic residues present on one side of an amphipathic α-helical structure within this domain. Appropriate substitution mutations of residues on that side produced mutants with increased or decreased dimerization activities. Using these mutants, we demonstrated that dimerization is not essential for dsRNA binding. However, enhancing dimerization artificially, by providing an extraneous dimerization domain, increased dsRNA binding of both wild-type and mutant proteins. In vitro, the dimerization-defective mutants could not be activated by dsRNA but were activated normally by heparin. In Saccharomyces cerevisiae, unlike wild-type PKR, these mutants could not inhibit cell growth and the dsRNA-binding domain of the dimerization-defective mutants could not prevent the antigrowth effect of wild-type PKR. These results demonstrate the biological importance of the dimerization properties of PKR.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Jonathan R Weinstein ◽  
Josiah Hanson ◽  
Lauren Hood ◽  
Diana Chao ◽  
Sean P Murphy ◽  
...  

Background: Both microglia and Toll-like receptors (TLRs) are critical in stroke pathophysiology. In ischemic brain, microglia sense endogenous TLR agonists (danger associated molecular patterns or DAMPs) and respond with varied immune reactions. CD24 and Siglec-G form a receptor complex that modulates TLR4 function and controls responses to DAMPs. The role of CD24 and Siglec-G in stroke is unknown. Methods: We performed 45 min middle cerebral artery occlusion (MCAO) on 12 - 14 week old wild-type, TLR4-/-, CD24-/- and Siglec-G-/- male mice and assessed total and regional adjusted infarct volumes at 48 hours with 2,3,5-triphenyltetrazolium staining. Number of mice per group was determined by power analysis. Cerebral blood flow was assessed with laser doppler flowmetry. In vitro, we examined the effects of endogenous TLR4 agonists heat shock protein-70 and high mobility group box 1 on cytokine (TNFα, IL-6) and chemokine (CXCL10, CCL5) release from microglia derived from wild-type, TLR4-/-, CD24-/- and Siglec-G-/- mice. Results: Following exclusions for weight, temperature and sub-optimal vessel occlusion/reperfusion, total infarct volumes (mean±SEM) were 51±8 mm3 (n = 21), 51±10 mm3 (n = 8), 28±8 mm3 (n = 13) and 54±8 mm3 (n = 19) in wild-type, TLR4-/-, CD24-/- and Siglec-G-/- mice, respectively (p>0.05, one-way ANOVA). Release of cytokines and chemokines was absent (as expected) in microglia from TLR4-/- mice and differentially regulated in microglia from CD24-/- and Siglec-G-/- mice. Conclusions: Genetic deficiency in TLR4, CD24 or Siglec-G modulated microglial response to endogenous TLR4 agonists but did not significantly alter post-stroke infarct volume.


1999 ◽  
Vol 144 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Rachel Hellman ◽  
Marc Vanhove ◽  
Annabelle Lejeune ◽  
Fred J. Stevens ◽  
Linda M. Hendershot

Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.


2019 ◽  
Vol 12 (574) ◽  
pp. eaao7232 ◽  
Author(s):  
Katsuhiko Itoh ◽  
Gen Kondoh ◽  
Hitoshi Miyachi ◽  
Manabu Sugai ◽  
Yoshiyuki Kaneko ◽  
...  

The posttranslational modification of histones is crucial in spermatogenesis, as in other tissues; however, during spermiogenesis, histones are replaced with protamines, which are critical for the tight packaging of the DNA in sperm cells. Protamines are also posttranslationally modified by phosphorylation and dephosphorylation, which prompted our investigation of the underlying mechanisms and biological consequences of their regulation. On the basis of a screen that implicated the heat shock protein Hspa4l in spermatogenesis, we generated mice deficient in Hspa4l (Hspa4l-null mice), which showed male infertility and the malformation of sperm heads. These phenotypes are similar to those of Ppp1cc-deficient mice, and we found that the amount of a testis- and sperm-specific isoform of the Ppp1cc phosphatase (Ppp1cc2) in the chromatin-binding fraction was substantially less in Hspa4l-null spermatozoa than that in those of wild-type mice. We further showed that Ppp1cc2 was a substrate of the chaperones Hsc70 and Hsp70 and that Hspa4l enhanced the release of Ppp1cc2 from these complexes, enabling the freed Ppp1cc2 to localize to chromatin. Pull-down and in vitro phosphatase assays suggested the dephosphorylation of protamine 2 at serine 56 (Prm2 Ser56) by Ppp1cc2. To confirm the biological importance of Prm2 Ser56 dephosphorylation, we mutated Ser56 to alanine in Prm2 (Prm2 S56A). Introduction of this mutation to Hspa4l-null mice (Hspa4l−/−; Prm2S56A/S56A) restored the malformation of sperm heads and the infertility of Hspa4l−/− mice. The dephosphorylation signal to eliminate phosphate was crucial, and these results unveiled the mechanism and biological relevance of the dephosphorylation of Prm2 for sperm maturation in vivo.


1998 ◽  
Vol 330 (3) ◽  
pp. 1469-1474 ◽  
Author(s):  
Yaxu WU ◽  
Johannes RUEF ◽  
N. Gadiparthi RAO ◽  
Cam PATTERSON ◽  
S. Marschall RUNGE

The mitogenic effects of thrombin are mediated by a G-protein-coupled receptor. Because the effects of thrombin are strongly influenced by the expression of its receptor, an understanding of its regulatory mechanisms is essential. To identify mechanisms of human thrombin receptor (HTR) gene regulation, a series of HTR-promoter-luciferase constructs were made and transfected into human microvascular endothelial cells for analysis. Deletion from bp -303 to -164 abolished reporter gene expression. Dimethyl sulphate treatment in vivo and DNase I footprinting in vitro demonstrated that a cluster of three GC box consensus sites was occupied, and electrophoretic mobility-shift assays established that Sp1 and Sp3 both bind to this 3ʹ GC box cluster. We mutated each of the three GC boxes individually and all three collectively within this 3ʹ cluster. Basal promoter activity was decreased to 46%, 78% and 29% of control for each of the GC boxes mutated individually, and to 6% when the three were mutated collectively. To test the individual abilities of Sp1 and Sp3 to activate or repress HTR transcription, we conducted co-transfection experiments with wild-type or mutated HTR-promoter-luciferase constructs. Co-transfection with Sp1 significantly augmented wild-type HTR promoter activity. Sp3 alone did not affect activity, and inhibited Sp1-mediated activation. Competition for shared binding sites by Sp1 and Sp3 might differentially regulate HTR expression in vascular endothelial cells.


2004 ◽  
Vol 78 (2) ◽  
pp. 700-709 ◽  
Author(s):  
Wenyan Wang ◽  
Frederick C. Lahser ◽  
MinKyung Yi ◽  
Jacquelyn Wright-Minogue ◽  
Ellen Xia ◽  
...  

ABSTRACT Inspection of over 250 hepatitis C virus (HCV) genome sequences shows that a threonine is strictly conserved at the P1 position in the NS3-NS4A (NS3-4A) autoproteolysis junction, while a cysteine is maintained as the P1 residue in all of the putative trans cleavage sites (NS4A-4B, NS4B-5A, and NS5A-5B). To understand why T631 is conserved at the NS3-4A junction of HCV, a series of in vitro transcription-translation studies were carried out using wild-type and mutant (T631C) NS3-4A constructs bearing native, truncated, and mutant NS4A segments. The autocleavage of the wild-type junction was found to be dependent on the presence of the central cofactor domain of NS4A (residues 21 to 34). In contrast, all NS3-4A T631C mutant proteins underwent self-cleavage even in the absence of the cofactor. Subgenomic replicons derived from the Con1 strain of HCV and bearing the T631C mutation showed reduced levels of colony formation in transfection studies. Similarly, replicons derived from a second genotype 1b virus, HCV-N, demonstrated a comparable reduction in replication efficiency in transient-transfection assays. These data suggest that the threonine is conserved at position 631 because it serves two functions: (i) to slow processing at the NS3-4A cleavage site, ensuring proper intercalation of the NS4A cofactor with NS3 prior to polyprotein scission, and (ii) to prevent subsequent product inhibition by the NS3 C terminus.


2002 ◽  
Vol 283 (6) ◽  
pp. C1761-C1775 ◽  
Author(s):  
Richard W. Tsika ◽  
John McCarthy ◽  
Natalia Karasseva ◽  
Yangsi Ou ◽  
Gretchen L. Tsika

We examined the functional role of distinct muscle-CAT (MCAT) elements during non-weight-bearing (NWB) regulation of a wild-type 293-base pair β-myosin heavy chain (βMyHC) transgene. Electrophoretic mobility shift assays (EMSA) revealed decreased NTEF-1, poly(ADP-ribose) polymerase, and Max binding at the human distal MCAT element when using NWB soleus vs. control soleus nuclear extract. Compared with the wild-type transgene, expression assays revealed that distal MCAT element mutation decreased basal transgene expression, which was decreased further in response to NWB. EMSA analysis of the human proximal MCAT (pMCAT) element revealed low levels of NTEF-1 binding that did not differ between control and NWB extract, whereas the rat pMCAT element displayed robust NTEF-1 binding that decreased when using NWB soleus extracts. Differences in binding between human and rat pMCAT elements were consistent whether using rat or mouse nuclear extract or in vitro synthesized human TEF-1 proteins. Our results provide the first evidence that 1) different binding properties and likely regulatory functions are served by the human and rat pMCAT elements, and 2) previously unrecognized βMyHC proximal promoter elements contribute to NWB regulation.


2020 ◽  
Vol 21 (18) ◽  
pp. 6802
Author(s):  
Darina Ocadlikova ◽  
Clara Iannarone ◽  
Anna Rita Redavid ◽  
Michele Cavo ◽  
Antonio Curti

Background: Recent evidence demonstrated that the treatment of acute myeloid leukemia (AML) cells with daunorubicin (DNR) but not cytarabine (Ara-C) results in immunogenic cell death (ICD). In the clinical setting, chemotherapy including anthracyclines and Ara-C remains a gold standard for AML treatment. In the last decade, etoposide (Eto) and fludarabine (Flu) have been added to the standard treatment for AML to potentiate its therapeutic effect and have been tested in many trials. Very little data are available about the ability of these drugs to induce ICD. Methods: AML cells were treated with all four drugs. Calreticulin and heat shock protein 70/90 translocation, non-histone chromatin-binding protein high mobility group box 1 and adenosine triphosphate release were evaluated. The treated cells were pulsed into dendritic cells (DCs) and used for in vitro immunological tests. Results: Flu and Ara-C had no capacity to induce ICD-related events. Interestingly, Eto was comparable to DNR in inducing all ICD events, resulting in DC maturation. Moreover, Flu was significantly more potent in inducing suppressive T regulatory cells compared to other drugs. Conclusions: Our results indicate a novel and until now poorly investigated feature of antineoplastic drugs commonly used for AML treatment, based on their different immunogenic potential.


Sign in / Sign up

Export Citation Format

Share Document