scholarly journals Dual Roles of Cripto as a Ligand and Coreceptor in the Nodal Signaling Pathway

2002 ◽  
Vol 22 (13) ◽  
pp. 4439-4449 ◽  
Author(s):  
Yu-Ting Yan ◽  
Jan-Jan Liu ◽  
Yi Luo ◽  
Chaosu E ◽  
Robert S. Haltiwanger ◽  
...  

ABSTRACT The EGF-CFC gene Cripto encodes an extracellular protein that has been implicated in the signaling pathway for the transforming growth factor beta (TGFβ) ligand Nodal. Although recent findings in frog and fish embryos have suggested that EGF-CFC proteins function as coreceptors for Nodal, studies in cell culture have implicated Cripto as a growth factor-like signaling molecule. Here we reconcile these apparently disparate models of Cripto function by using a mammalian cell culture assay to investigate the signaling activities of Nodal and EGF-CFC proteins. Using a luciferase reporter assay, we found that Cripto has activities consistent with its being a coreceptor for Nodal. However, Cripto can also function as a secreted signaling factor in cell coculture assays, suggesting that it may also act as a coligand for Nodal. Furthermore, we found that the ability of Cripto to bind to Nodal and mediate Nodal signaling requires the addition of an O-linked fucose monosaccharide to a conserved site within EGF-CFC proteins. We propose a model in which Cripto has dual roles as a coreceptor as well as a coligand for Nodal and that this signaling interaction with Nodal is regulated by an unusual form of glycosylation. Our findings highlight the significance of extracellular modulation of ligand activity as an important means of regulating TGFβ signaling pathways during vertebrate development.

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 960 ◽  
Author(s):  
Panagiotis Papoutsoglou ◽  
Corentin Louis ◽  
Cédric Coulouarn

Cholangiocarcinoma is a deadly cancer worldwide, associated with a poor prognosis and limited therapeutic options. Although cholangiocarcinoma accounts for less than 15% of liver primary cancer, its silent nature restricts early diagnosis and prevents efficient treatment. Therefore, it is of clinical relevance to better understand the molecular basis of cholangiocarcinoma, including the signaling pathways that contribute to tumor onset and progression. In this review, we discuss the genetic, molecular, and environmental factors that promote cholangiocarcinoma, emphasizing the role of the transforming growth factor β (TGFβ) signaling pathway in the progression of this cancer. We provide an overview of the physiological functions of TGFβ signaling in preserving liver homeostasis and describe how advanced cholangiocarcinoma benefits from the tumor-promoting effects of TGFβ. Moreover, we report the importance of noncoding RNAs as effector molecules downstream of TGFβ during cholangiocarcinoma progression, and conclude by highlighting the need for identifying novel and clinically relevant biomarkers for a better management of patients with cholangiocarcinoma.


2015 ◽  
Vol 35 (1) ◽  
pp. 213-226 ◽  
Author(s):  
Xin Zhao ◽  
Kejing Wang ◽  
Yuhua Liao ◽  
Qiutang Zeng ◽  
Yushu Li ◽  
...  

Background/Aims: Hypoxia is a basic pathological challenge that is associated with numerous cardiovascular disorders including aberrant cardiac remodeling. Transforming growth factor beta (TGF-β) signaling pathway plays a pivotal role in mediating cardiac fibroblast (CF) function and cardiac fibrosis. Recent data suggested that microRNA-101a (miR-101a) exerted anti-fibrotic effects in post-infarct cardiac remodeling and improved cardiac function. This study aimed to investigate the potential relationship between hypoxia, miR-101a and TGF-β signaling pathway in CFs. Methods and Results: Two weeks following coronary artery occlusion in rats, the expression levels of both TGFβ1 and TGFβRI were increased, but the expression of miR-101a was decreased at the site of the infarct and along its border. Cultured rat neonatal CFs treated with hypoxia were characterized by the up-regulation of TGFβ1 and TGFβRI and the down-regulation of miR-101a. Delivery of miR-101a mimics significantly suppressed the expression of TGFβRI and p-Smad 3, CF differentiation and collagen content of CFs. These anti-fibrotic effects were abrogated by co-transfection with AMO-miR-101a, an antisense inhibitor of miR-101a. The repression of TGFβRI, a target of miR-101a, was validated by luciferase reporter assays targeting the 3'UTR of TGFβRI. Additionally, we found that overexpression of miR-101a reversed the improved migration ability of CFs and further reduced CF proliferation caused by hypoxia. Conclusion: Our study illustrates that miR-101a exerts anti-fibrotic effects by targeting TGFβRI, suggesting that miR-101a plays a multi-faceted role in modulating TGF-β signaling pathway and cardiac fibrosis.


2013 ◽  
Vol 2 (5) ◽  
pp. 250-260 ◽  
Author(s):  
Jean-François Denis ◽  
Mathieu Lévesque ◽  
Simon D. Tran ◽  
Aldo-Joseph Camarda ◽  
Stéphane Roy

2017 ◽  
Vol 5 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Joanna Budna ◽  
Piotr Celichowski ◽  
Paresto Karimi ◽  
Wiesława Kranc ◽  
Artur Bryja ◽  
...  

Summary The oocyte growth and development in follicular environment are substantially accompanied by surrounding somatic cumulus (CCs) and granulosa cells (GCs). During these processes, the mammalian gametes reach full maturational stage and may be further successfully fertilized by single spermatozoon. These unique mechanisms are regulated by expression of clusters of genes and their biochemical signaling pathways. In this article we described differential expression pattern of transforming growth factor beta (TGFB) gene superfamily in porcine oocytes before and after in vitro maturation (IVM). We performed Affymetrix® microarray assays to investigate the TGFB-related genes expression profile in porcine immature oocytes and gametes cultured for 44h in vitro. In results we found 419 different genes, 379 genes with lower expression, and 40 genes characterized by increased RNA profile. Moreover, significant up-regulation of 6 genes belonging to TGFB signaling pathway such as: TGFBR3, SMAD4, FOS, KLF10, ID1, MAP3K1 in immature porcine oocytes (before IVM), was also observed. It may be suggested that genes involved in TGFB-related signaling pathway are substantially regulated before IVM. Furthermore, these genes may play a significant role during early stages of nuclear and/or cytoplasmic porcine oocytes maturation. The investigated transcripts may be also recommended as the markers of oocytes maturational capability in pigs.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dongbo Wu ◽  
Fanglan Wu ◽  
Birong Li ◽  
Wei Huang ◽  
Donglian Wang

Abstract Background It has been known that ovarian cancer (OC) is a leading cause for women mortality globally. We aimed to analyze the underlying mechanism supporting that enhancer of zeste homolog 2 (EZH2) affected the development of OC via the involvement of microRNA-139 (miR-139)/transforming growth factor beta (TGF-β)/lysophosphatidic acid-1 (LPA1) axis. Methods High expression patterns of EZH2 and miR-139 and low LPA1 expression pattern in OC were evaluated using RT-qPCR and immunoblotting, while their correlation was assessed by the Spearman’s rank and Pearson’s correlation coefficient. Subsequently, dual-luciferase reporter gene assay was applied to validate the binding relationship between miR-139 and LPA1, while H3K27me enrichment was assessed by ChIP assay. After that, the effects of altered expression of EZH2, miR-194, or LPA1 on the cell biological functions and the expression pattern of TGF-related factors were evaluated. Results We found that EZH2 repressed the miR-139 expression pattern by recruiting H3K27me3 to promote miR-139 promoter methylation, while silencing of EZH2 suppressed in vitro cancer progression by increasing miR-139. LPA1 was a target of miR-139, and could activate the TGF-β signaling pathway, which hastened the OC progression. miR-139-targeted inhibition of LPA1 and LPA1-activated TGF-β signaling pathway were evidenced to be critical mechanisms underlying the effects of EZH2 on OC cells. Lastly, silencing of EZH2 inhibited the xenograft growth in vivo. Conclusions EZH2 could down-regulate miR-139 expression pattern by recruiting H3K27me3 to promote the miR-139 promoter methylation and activate the TGF-β pathway by up-regulating LPA1, which contributed to the progression of OC. The current study may possess potentials for OC treatment.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Trevi A Ramirez ◽  
Greg Aune

Childhood cancer survivors are at an increased risk of heart disease as a result of their cancer treatments. Drugs like doxorubicin (DOX) are an effective part of treatment regimens, but have been proven to cause acute and chronic cardiotoxicity (DOX tox). An under-investigated aspect of DOX tox is the interstitial fibrosis that the majority of patients develop. This project aims to better understand the pathology of DOX-induced cardiac fibrosis and the role of the pro-fibrotic transforming growth factor-beta (TGFb) signaling pathway. Research in the area of fibrosis and the effect of DOX on cardiac fibroblasts will increase our understanding of DOX tox. This understanding will allow for improved treatment of pediatric cancer patients by reducing the cardiotoxic sequelae of many standard chemotherapy regimens. Cardiac fibroblasts, isolated from 3 week old mice and treated with 5 μM DOX, showed an increase in nuclear pSMAD compared to control cells via fluorescent immunocytology (2.06 ± 0.26 vs 1.13 ± 0.15, p<0.05). Mice treated with 3 mg/kg DOX injections from 2 weeks to 6 weeks of age showed increased TGFb staining in the left ventricle (1.83 ± 0.34 vs 0.87 ± 0.28, p<0.05) a week after treatment ceased. A subset of mice were followed into old age and sacrificed at 80 weeks. A clear increase in TGFb was seen with age. However, 80 week mice that were exposed to DOX early in life showed a greater increase in TGFb staining compared to untreated 80 week old mice (44.50 ± 2.48 vs 30.93 ± 2.30, p<0.001). Early DOX exposure causes chronic molecular changes as evidenced by acute and chronic changes in signaling molecules in cardiac tissue. Changes in collagen seen in earlier studies and increases in MMP-2 from the literature suggest a cardiac remodeling phenotype in DOX-exposed animals. This project demonstrates that DOX initiates changes to pro-fibrotic pathways, seemingly driven by the TGFb signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document