scholarly journals MicroRNA-101a Inhibits Cardiac Fibrosis Induced by Hypoxia via Targeting TGFβRI on Cardiac Fibroblasts

2015 ◽  
Vol 35 (1) ◽  
pp. 213-226 ◽  
Author(s):  
Xin Zhao ◽  
Kejing Wang ◽  
Yuhua Liao ◽  
Qiutang Zeng ◽  
Yushu Li ◽  
...  

Background/Aims: Hypoxia is a basic pathological challenge that is associated with numerous cardiovascular disorders including aberrant cardiac remodeling. Transforming growth factor beta (TGF-β) signaling pathway plays a pivotal role in mediating cardiac fibroblast (CF) function and cardiac fibrosis. Recent data suggested that microRNA-101a (miR-101a) exerted anti-fibrotic effects in post-infarct cardiac remodeling and improved cardiac function. This study aimed to investigate the potential relationship between hypoxia, miR-101a and TGF-β signaling pathway in CFs. Methods and Results: Two weeks following coronary artery occlusion in rats, the expression levels of both TGFβ1 and TGFβRI were increased, but the expression of miR-101a was decreased at the site of the infarct and along its border. Cultured rat neonatal CFs treated with hypoxia were characterized by the up-regulation of TGFβ1 and TGFβRI and the down-regulation of miR-101a. Delivery of miR-101a mimics significantly suppressed the expression of TGFβRI and p-Smad 3, CF differentiation and collagen content of CFs. These anti-fibrotic effects were abrogated by co-transfection with AMO-miR-101a, an antisense inhibitor of miR-101a. The repression of TGFβRI, a target of miR-101a, was validated by luciferase reporter assays targeting the 3'UTR of TGFβRI. Additionally, we found that overexpression of miR-101a reversed the improved migration ability of CFs and further reduced CF proliferation caused by hypoxia. Conclusion: Our study illustrates that miR-101a exerts anti-fibrotic effects by targeting TGFβRI, suggesting that miR-101a plays a multi-faceted role in modulating TGF-β signaling pathway and cardiac fibrosis.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Sashwati Roy ◽  
Savita Khanna ◽  
Chandan K Sen

Background . Transforming growth factor beta-1 (TGFbeta-1) is a key cytokine implicated in the development of cardiac fibrosis following ischemia-reperfusion (IR) injury. The profibrotic effects of TGFbeta-1 are primarily attributable to the differentiation of cardiac fibroblasts (CF) to myofibroblasts. Previously, we have reported perceived hyperoxia (Circ Res 92:264 –71), sub-lethal reoxygenation shock during IR, induces differentiation of CF to myofibroblasts at the infarct site. The mechanisms underlying oxygen-sensitive induction of TGFbeta-1 mRNA remain to be characterized. Hypothesis . Fra2 mediates oxygen-induced TGFbeta-1 mRNA expression in adult cardiac fibroblasts. Methods. TGFbeta-1 mRNA expression in infarct tissue was investigated in an IR injury model. The left anterior descending coronary artery of mice was transiently occluded for 60 minutes followed by reperfusion to induce IR injury. Spatially resolved infarct and non-infarct tissues were collected at 0, 1, 3, 5, and 7 days post-IR using laser capture microdissection. TGFbeta-1 mRNA levels were measured using real-time PCR. To investigate the role of oxygen in the regulation of TGFbeta-1, we used our previously reported model of perceived hyperoxia where CF (from 5wks old mice) after isolation were cultured at 5%O 2 (physiological pO 2 ) followed by transferring them to 20%O 2 to induce hyperoxic insult. Results & Conclusions. In vivo, a significant increase (p<0.01; n=5) in TGFbeta-1 mRNA was observed at the infarct site already at day 1 post-IR. The levels continued to increase until day 7 post-IR. In vitro, exposure of CF to 20%O 2 hyperoxic insult induced TGFbeta-1 mRNA (p<0.001; n=4) and protein (p<0.01; n=4) expression. Using a TGFbeta-1 promoter-luciferase reporter and DNA binding assays, we collected first evidence that AP-1 and its component Fra2 as major mediators of oxygen-induced TGFbeta-1 expression. Exposure to 20%O 2 resulted in increased localization of Fra2 in nucleus. siRNA-dependent Fra-2 knock-down completely abrogated oxygen-induced TGFbeta1 expression. In conclusion, this study presents first evidence that Fra-2 is involved in inducible TGFbeta1 expression in CF. Fra2 was noted as being central in regulating oxygen-induced TGFbeta-1 expression.s


2020 ◽  
Vol 477 (17) ◽  
pp. 3401-3415
Author(s):  
Andrea Ghiroldi ◽  
Marco Piccoli ◽  
Pasquale Creo ◽  
Federica Cirillo ◽  
Paola Rota ◽  
...  

Cardiac fibrosis is a key physiological response to cardiac tissue injury to protect the heart from wall rupture. However, its progression increases heart stiffness, eventually causing a decrease in heart contractility. Unfortunately, to date, no efficient antifibrotic therapies are available to the clinic. This is primarily due to the complexity of the process, which involves several cell types and signaling pathways. For instance, the transforming growth factor beta (TGF-β) signaling pathway has been recognized to be vital for myofibroblasts activation and fibrosis progression. In this context, complex sphingolipids, such as ganglioside GM3, have been shown to be directly involved in TGF-β receptor 1 (TGF-R1) activation. In this work, we report that an induced up-regulation of sialidase Neu3, a glycohydrolytic enzyme involved in ganglioside cell homeostasis, can significantly reduce cardiac fibrosis in primary cultures of human cardiac fibroblasts by inhibiting the TGF-β signaling pathway, ultimately decreasing collagen I deposition. These results support the notion that modulating ganglioside GM3 cell content could represent a novel therapeutic approach for cardiac fibrosis, warranting for further investigations.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dongbo Wu ◽  
Fanglan Wu ◽  
Birong Li ◽  
Wei Huang ◽  
Donglian Wang

Abstract Background It has been known that ovarian cancer (OC) is a leading cause for women mortality globally. We aimed to analyze the underlying mechanism supporting that enhancer of zeste homolog 2 (EZH2) affected the development of OC via the involvement of microRNA-139 (miR-139)/transforming growth factor beta (TGF-β)/lysophosphatidic acid-1 (LPA1) axis. Methods High expression patterns of EZH2 and miR-139 and low LPA1 expression pattern in OC were evaluated using RT-qPCR and immunoblotting, while their correlation was assessed by the Spearman’s rank and Pearson’s correlation coefficient. Subsequently, dual-luciferase reporter gene assay was applied to validate the binding relationship between miR-139 and LPA1, while H3K27me enrichment was assessed by ChIP assay. After that, the effects of altered expression of EZH2, miR-194, or LPA1 on the cell biological functions and the expression pattern of TGF-related factors were evaluated. Results We found that EZH2 repressed the miR-139 expression pattern by recruiting H3K27me3 to promote miR-139 promoter methylation, while silencing of EZH2 suppressed in vitro cancer progression by increasing miR-139. LPA1 was a target of miR-139, and could activate the TGF-β signaling pathway, which hastened the OC progression. miR-139-targeted inhibition of LPA1 and LPA1-activated TGF-β signaling pathway were evidenced to be critical mechanisms underlying the effects of EZH2 on OC cells. Lastly, silencing of EZH2 inhibited the xenograft growth in vivo. Conclusions EZH2 could down-regulate miR-139 expression pattern by recruiting H3K27me3 to promote the miR-139 promoter methylation and activate the TGF-β pathway by up-regulating LPA1, which contributed to the progression of OC. The current study may possess potentials for OC treatment.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Trevi A Ramirez ◽  
Greg Aune

Childhood cancer survivors are at an increased risk of heart disease as a result of their cancer treatments. Drugs like doxorubicin (DOX) are an effective part of treatment regimens, but have been proven to cause acute and chronic cardiotoxicity (DOX tox). An under-investigated aspect of DOX tox is the interstitial fibrosis that the majority of patients develop. This project aims to better understand the pathology of DOX-induced cardiac fibrosis and the role of the pro-fibrotic transforming growth factor-beta (TGFb) signaling pathway. Research in the area of fibrosis and the effect of DOX on cardiac fibroblasts will increase our understanding of DOX tox. This understanding will allow for improved treatment of pediatric cancer patients by reducing the cardiotoxic sequelae of many standard chemotherapy regimens. Cardiac fibroblasts, isolated from 3 week old mice and treated with 5 μM DOX, showed an increase in nuclear pSMAD compared to control cells via fluorescent immunocytology (2.06 ± 0.26 vs 1.13 ± 0.15, p<0.05). Mice treated with 3 mg/kg DOX injections from 2 weeks to 6 weeks of age showed increased TGFb staining in the left ventricle (1.83 ± 0.34 vs 0.87 ± 0.28, p<0.05) a week after treatment ceased. A subset of mice were followed into old age and sacrificed at 80 weeks. A clear increase in TGFb was seen with age. However, 80 week mice that were exposed to DOX early in life showed a greater increase in TGFb staining compared to untreated 80 week old mice (44.50 ± 2.48 vs 30.93 ± 2.30, p<0.001). Early DOX exposure causes chronic molecular changes as evidenced by acute and chronic changes in signaling molecules in cardiac tissue. Changes in collagen seen in earlier studies and increases in MMP-2 from the literature suggest a cardiac remodeling phenotype in DOX-exposed animals. This project demonstrates that DOX initiates changes to pro-fibrotic pathways, seemingly driven by the TGFb signaling pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qing-Yuan Gao ◽  
Hai-Feng Zhang ◽  
Zhi-Teng Chen ◽  
Yue-Wei Li ◽  
Shao-Hua Wang ◽  
...  

AimsActivation of cardiac fibroblasts (CF) is crucial to cardiac fibrosis. We constructed a cardiac fibroblast-related competing endogenous RNA (ceRNA) network. Potential functions related to fibrosis of “hub genes” in this ceRNA network were explored.Materials and MethodsThe Gene Expression Omnibus database was searched for eligible datasets. Differentially expressed messenger (m)RNA (DE-mRNA) and long non-coding (lnc)RNA (DE-lncRNA) were identified. microRNA was predicted and validated. A predicted ceRNA network was constructed and visualized by Cytoscape, and ceRNA crosstalk was validated. A Single Gene Set Enrichment Analysis (SGSEA) was done, and the Comparative Toxicogenomics Database (CTD) was employed to analyze the most closely associated pathways and diseases of DE-mRNA in the ceRNA network. The functions of DE-mRNA and DE-lncRNA in the ceRNA network were validated by small interfering (si)RNA depletion.ResultsThe GSE97358 and GSE116250 datasets (which described differentially expressed genes in human cardiac fibroblasts and failing ventricles, respectively) were used for analyses. Four-hundred-and-twenty DE-mRNA and 39 DE-lncRNA, and 369 DE-mRNA and 93 DE-lncRNA were identified, respectively, in the GSE97358 and GSE116250 datasets. Most of the genes were related to signal transduction, cytokine activity, and cell proliferation. Thirteen DE-mRNA with the same expression tendency were overlapped in the two datasets. Twenty-three candidate microRNAs were predicted and the expression of 11 were different. Only two DE-lncRNA were paired to any one of 11 microRNA. Finally, two mRNA [ADAM metallopeptidase domain 19, (ADAM19) and transforming growth factor beta induced, (TGFBI)], three microRNA (miR-9-5p, miR-124-3p, and miR-153-3p) and two lncRNA (LINC00511 and SNHG15) constituted our ceRNA network. siRNA against LINC00511 increased miR-124-3p and miR-9-5p expression, and decreased ADAM19 and TGFBI expression, whereas siRNA against SNHG15 increased miR-153-3p and decreased ADAM19 expression. ADAM19 and TGFBI were closely related to the TGF-β1 pathway and cardiac fibrosis, as shown by SGSEA and CTD, respectively. Depletion of two mRNA or two lncRNA could alleviate CF activation.ConclusionsThe CF-specific ceRNA network, including two lncRNA, three miRNA, and two mRNA, played a crucial role during cardiac fibrosis, which provided potential target genes in this field.


2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Jiaxin Li ◽  
Yingnan Dai ◽  
Zhendong Su ◽  
Guoqian Wei

To investigate the effects of miR-9 on high glucose (HG)-induced cardiac fibrosis in human cardiac fibroblasts (HCFs), and to establish the mechanism underlying these effects. HCFs were transfected with miR-9 inhibitor or mimic, and then treated with normal or HG. Cell viability and proliferation were detected by using the Cell Counting Kit-8 (CCK-8) assay and Brdu-ELISA assay. Cell differentiation and collagen accumulation of HCFs were detected by qRT-PCR and Western blot assays respectively. The mRNA and protein expressions of transforming growth factor-β receptor type II (TGFBR2) were determined by qRT-PCR and Western blotting. Up-regulation of miR-9 dramatically improved HG-induced increases in cell proliferation, differentiation and collagen accumulation of HCFs. Moreover, bioinformatics analysis predicted that the TGFBR2 was a potential target gene of miR-9. Luciferase reporter assay demonstrated that miR-9 could directly target TGFBR2. Inhibition of TGFBR2 had the similar effect as miR-9 overexpression. Down-regulation of TGFBR2 in HCFs transfected with miR-9 inhibitor partially reversed the protective effect of miR-9 overexpression on HG-induced cardiac fibrosis in HCFs. Up-regulation of miR-9 ameliorates HG-induced proliferation, differentiation and collagen accumulation of HCFs by down-regulation of TGFBR2. These results provide further evidence for protective effect of miR-9 overexpression on HG-induced cardiac fibrosis.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Norimichi Koitabashi ◽  
Masahiko Kurabayashi ◽  
Eiki Takimoto ◽  
David A Kass

[Background] Emerging evidence from cell-specific conditional gene manipulation models has revealed complex interactions with differential roles of cardiomyocyte (CM) and non-CM signaling in the evolution of pathological cardiac remodeling. A major factor involved in such cross talk is transforming growth factor-beta (TGFβ), which exists in CM,fibroblasts, and vascular cells. Both mechanical overload and prolonged catecholamine stimulation are critical determinants of hypertensive heart disease. Here, we tested the role of cell-specific TGFβ signaling in chronic pressure-overload or isoproterenol (Iso)-induced cardiac remodeling using CM-specific gene suppression of TGFβ type2 receptor in mice. [Methods and Results] αMHC-driven tamoxifen-inducible Cre (MCM) x Tgfbr2 floxed mice (MCMR2), which achieved CM-specific knockdown of TGFβ signaling, showed a striking suppression of cardiac dilatation and dysfunction induced by chronic pressure-overload. Chronic Iso infusion induced modest cardiac hypertrophy with moderate myocardial fibrosis. Interestingly, in contrast to TAC, myocardial fibrosis induced by the chronic Iso exposure was not inhibited, rather worsened in MCMR2 mice. Systemic treatment with TGFβ neutralizing antibody (NAb) for Chronic Iso significantly inhibited myocardial fibrosis, yet cardiac function and hypertrophy were not improved. In Iso-treated cultured cardiomyocytes, profibrotic genes were up-regulated by TGFβ-receptor inhibition, while they were inhibited in cultured cardiac fibroblasts. [Conclusion] CM-specific TGFβ signaling inhibition has marked protective effect for pressure-overload induced cardiac remodeling but not for Iso-induced cardiac remodeling. These results suggest that the role of TGFβ signaling may be determined by targeted cell types and pathological stresses in a development of heart failure.


Cardiology ◽  
2016 ◽  
Vol 134 (3) ◽  
pp. 340-346 ◽  
Author(s):  
Jianquan Zhao ◽  
Han Lei

Background: The proliferation and migration of cardiac fibroblasts are critical for the progress of cardiac fibrosis. Tripartite motif protein 72 (Trim72), also known as MG53, mediates the dynamic process of membrane fusion and exocytosis in striated muscle. However, the role of Trim72 in the proliferation and migration of cardiac fibroblasts is unknown. Methods: In the present study, we used small interference RNA (siRNA) to silence Trim72 and then investigated the effects of Trim72 on cardiac fibroblast proliferation and migration, which were activated during cardiac remodeling after myocardial infarction. Cardiac fibroblasts were isolated from 2- to 3-day-old neonatal Sprague-Dawley rats and transfected with siRNA. A cell-counting assay was used to determine the proliferation of cardiac fibroblasts. A Boyden chamber assay was performed to determine the migration of cardiac fibroblasts. Results: Our study has, for the first time, demonstrated that Trim72 regulates the cell proliferation and migration of rat cardiac fibroblasts. Furthermore, the data from the gene expression profile microarray analysis indicate that Trim72 depletion can cause downregulation of the transforming growth factor (TGF)-β signaling pathway, suggesting that Trim72 regulates the proliferation and migration of cardiac fibroblasts probably via the TGF-β signaling pathway. Conclusions: We have demonstrated that Trim72 might play a pivotal role in the proliferation of neonatal rat cardiac fibroblasts, which could be a potential target for the treatment of cardiac fibrosis. However, the involvement of other signaling pathways and factors in the formation of cardiac fibrosis cannot be excluded.


2020 ◽  
Vol 52 (5) ◽  
pp. 554-562
Author(s):  
Yuke Zhang ◽  
Kun Shi ◽  
Hang Liu ◽  
Wei Chen ◽  
Yunhai Luo ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is one of the most lethal cancers in the world. MicroRNAs play a pivotal role in the progression of various cancers. To date, very little attention has been paid to miR-4458. Therefore, the aim of our study was to explore the function and underlying molecular mechanism of miR-4458 in HCC. We found that the expression of miR-4458 was reduced in HCC tissues and cell lines. Forced overexpression of miR-4458 inhibited the migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells, while downregulation of miR-4458 promoted the aggressive phenotype. Furthermore, transforming growth factor beta receptor 1 (TGFBR1), the modulator of the TGF-β signaling pathway, was verified to be a novel target gene of miR-4458 by dual-luciferase reporter gene assay. Upregulated miR-4458 dramatically abolished TGFBR1 and p-Smad2/3 expression, thus blocking the TGF-β signaling pathway. Moreover, restoration of TGFBR1 partially rescued the miR-4458-mediated suppressive effect on the migration, invasion, and EMT and reactivated the TGF-β signaling pathway in HCC cells. In summary, our findings first demonstrated a mechanism of miR-4458 in HCC cell migration, invasion, and EMT by regulating the TGF-β signaling pathway via directly targeting TGFBR1.


Sign in / Sign up

Export Citation Format

Share Document