scholarly journals Expression Pattern, Regulation, and Biological Role of Runt Domain Transcription Factor, run, in Caenorhabditis elegans

2002 ◽  
Vol 22 (2) ◽  
pp. 547-554 ◽  
Author(s):  
Seunghee Nam ◽  
Yun-Hye Jin ◽  
Qing-Lin Li ◽  
Kwang-Youl Lee ◽  
Goo-Bo Jeong ◽  
...  

ABSTRACT The Caenorhabditis elegans run gene encodes a Runt domain factor. Runx1, Runx2, and Runx3 are the three known mammalian homologs of run. Runx1, which plays an essential role in hematopoiesis, has been identified at the breakpoint of chromosome translocations that are responsible for human leukemia. Runx2 plays an essential role in osteogenesis, and inactivation of one allele of Runx2 is responsible for the human disease cleidocranial dysplasia. To understand the role of run in C. elegans, we used transgenic run::GFP reporter constructs and a double-stranded RNA-mediated interference method. The expression of run was detected as early as the bean stage exclusively in the nuclei of seam hypodermal cells and lasted until the L3 stage. At the larval stage, expression of run was additionally detected in intestinal cells. The regulatory elements responsible for the postembryonic hypodermal seam cells and intestinal cells were separately located within a 7.2-kb-long intron region. This is the first report demonstrating that an intron region is essential for stage-specific and cell type-specific expression of a C. elegans gene. RNA interference analysis targeting the run gene resulted in an early larva-lethal phenotype, with apparent malformation of the hypodermis and intestine. These results suggest that run is involved in the development of a functional hypodermis and gut in C. elegans. The highly conserved role of the Runt domain transcription factor in gut development during evolution from nematodes to mammals is discussed.

2021 ◽  
Author(s):  
Vladimir Lazetic ◽  
Fengting Wu ◽  
Lianne B Cohen ◽  
Kirthi C Reddy ◽  
Ya-Ting Chang ◽  
...  

Defense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts. For example, almost nothing is known about the transcription factors that induce defense against intracellular infection in the model nematode Caenorhabditis elegans. Two types of intracellular pathogens that naturally infect C. elegans are the Orsay virus, which is a positive-sense RNA virus, and microsporidia, which are fungal pathogens. Surprisingly, these molecularly distinct pathogens induce a common host transcriptional response called the Intracellular Pathogen Response (IPR). Here we describe zip-1 as an IPR regulator that functions downstream of all known IPR activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor of previously unknown function, and we show how zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for all triggers of the IPR, and that this transcription factor plays a protective role against intracellular pathogen infection in C. elegans.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Vladimir Lažetić ◽  
Fengting Wu ◽  
Lianne B. Cohen ◽  
Kirthi C. Reddy ◽  
Ya-Ting Chang ◽  
...  

AbstractDefense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


Genetics ◽  
2021 ◽  
Author(s):  
Anjali Sandhu ◽  
Divakar Badal ◽  
Riya Sheokand ◽  
Shalini Tyagi ◽  
Varsha Singh

Abstract Collagen enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode’s genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens- DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10- led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs levamisole and ivermectin. Upon exposure to paraquat, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77706-77715 ◽  
Author(s):  
Supinder Kaur ◽  
Aamir Nazir

Studies employing transgenicC. elegansmodel show that trehalose, a protein stabilizer, alleviates manifestations associated with Parkinson's diseaseviaits inherent activity and through induction of autophagic machinery.


2000 ◽  
Vol 113 (16) ◽  
pp. 2821-2827 ◽  
Author(s):  
L. Quarmby

Recent biochemical studies of the AAA ATPase, katanin, provide a foundation for understanding how microtubules might be severed along their length. These in vitro studies are complemented by a series of recent reports of direct in vivo observation of microtubule breakage, which indicate that the in vitro phenomenon of catalysed microtubule severing is likely to be physiological. There is also new evidence that microtubule severing by katanin is important for the production of non-centrosomal microtubules in cells such as neurons and epithelial cells. Although it has been difficult to establish the role of katanin in mitosis, new genetic evidence indicates that a katanin-like protein, MEI-1, plays an essential role in meiosis in C. elegans. Finally, new proteins involved in the severing of axonemal microtubules have been discovered in the deflagellation system of Chlamydomonas.


2021 ◽  
Author(s):  
Omar Pena-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Tianyou Yao ◽  
Henry He ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. In the nematode Caenorhabditis elegans, 113 somatic cells undergo apoptosis during embryogenesis and are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells in C. elegans embryos using a real-time imaging technique. Specifically, double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner membrane to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant delays in the degradation of apoptotic cells, demonstrating the important contribution of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, CED-1s adaptor CED-6, and the large GTPase dynamin (DYN-1) promote the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Our findings reveal that, unlike the single-membrane, LC3- associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, canonical autophagosomes function in the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream factors that initiate this crosstalk.


Sign in / Sign up

Export Citation Format

Share Document