scholarly journals PEX11α Is Required for Peroxisome Proliferation in Response to 4-Phenylbutyrate but Is Dispensable for Peroxisome Proliferator-Activated Receptor Alpha-Mediated Peroxisome Proliferation

2002 ◽  
Vol 22 (23) ◽  
pp. 8226-8240 ◽  
Author(s):  
Xiaoling Li ◽  
Eveline Baumgart ◽  
Gao-Xiang Dong ◽  
James C. Morrell ◽  
Gerardo Jimenez-Sanchez ◽  
...  

ABSTRACT The PEX11 peroxisomal membrane proteins promote peroxisome division in multiple eukaryotes. As part of our effort to understand the molecular and physiological functions of PEX11 proteins, we disrupted the mouse PEX11α gene. Overexpression of PEX11α is sufficient to promote peroxisome division, and a class of chemicals known as peroxisome proliferating agents (PPAs) induce the expression of PEX11α and promote peroxisome division. These observations led to the hypothesis that PPAs induce peroxisome abundance by enhancing PEX11α expression. The phenotypes of PEX11α−/− mice indicate that this hypothesis remains valid for a novel class of PPAs that act independently of peroxisome proliferator-activated receptor alpha (PPARα) but is not valid for the classical PPAs that act as activators of PPARα. Furthermore, we find that PEX11α−/− mice have normal peroxisome abundance and that cells lacking both PEX11α and PEX11β, a second mammalian PEX11 gene, have no greater defect in peroxisome abundance than do cells lacking only PEX11β. Finally, we report the identification of a third mammalian PEX11 gene, PEX11γ, and show that it too encodes a peroxisomal protein.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sagartirtha Sarkar ◽  
Santanu Rana

Cardiac tissue engineering is an interdisciplinary field that engineers modulation of viable molecular milieu to restore, maintain or improve heart function. Myocardial workload (energy demand) and energy substrate availability (supply) are in continual flux to maintain specialized cellular processes, yet the heart has a limited capacity for substrate storage and utilization during pathophysiological conditions. Damage to heart muscle, acute or chronic, leads to dysregulation of cardiac metabolic processes associated with gradual but progressive decline in mitochondrial respiratory pathways resulting in diminished ATP production. The Peroxisome Proliferator Activated Receptor Alpha ( PPARα ) is known to regulate fatty acid to glucose metabolic balance as well as mitochondrial structural integrity. In this study, a non-canonical pathway of PPARα was analyzed by cardiomyocyte targeted PPARα overexpression during cardiac hypertrophy that showed significant downregulation in p53 acetylation as well as GSK3β activation levels. Targeted PPARα overexpression during hypertrophy resulted in restoration of mitochondrial structure and function along with significantly improved mitochondrial ROS generation and membrane potential. This is the first report of myocyte targeted PPARα overexpression in hypertrophied myocardium that results in an engineered heart with significantly improved function with increased muscle mitochondrial endurance and reduced mitochondrial apoptotic load, thus conferring a greater resistance to pathological stimuli within cardiac microenvironment.


1997 ◽  
Vol 2 (5) ◽  
pp. 315-327 ◽  
Author(s):  
Shiho Osada ◽  
Toshiro Tsukamoto ◽  
Masaki Takiguchi ◽  
Masataka Mori ◽  
Takashi Osumi

Sign in / Sign up

Export Citation Format

Share Document