scholarly journals A Maternal Smad Protein Regulates Early Embryonic Apoptosis in Xenopus laevis

2002 ◽  
Vol 22 (5) ◽  
pp. 1317-1328 ◽  
Author(s):  
Yuko Miyanaga ◽  
Ingrid Torregroza ◽  
Todd Evans

ABSTRACT We identified cDNAs encoding the Xenopus Smad proteins most closely related to mammalian Smad8, and we present a functional analysis of this activity (also referred to recently as xSmad11). Misexpression experiments indicate that xSmad8(11) regulates pathways distinct from those regulated by the closely related xSmad1. Embryos that develop from eggs depleted of xSmad8(11) mRNA fail to gastrulate; instead, at the time of gastrulation, they initiate a widespread program of apoptosis, via a CPP32/caspase 3 pathway. Embryos that avoid this fate display gastrulation defects. Activation of apoptosis is rescued by expression of xSmad8(11) but not xSmad1. Our results demonstrate an embryonic requirement for Smad8(11) activity and show that a maternally derived Smad signaling pathway is required for gastrulation and for mediating a cell survival program during early embryogenesis. We suggest that xSmad8(11) functions as part of a maternally derived mechanism shown previously by others to monitor Xenopus early embryonic cell cycles.

Development ◽  
2021 ◽  
Vol 148 (13) ◽  
Author(s):  
Susanna E. Brantley ◽  
Stefano Di Talia

ABSTRACT Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.


2007 ◽  
Vol 48 (12) ◽  
pp. 1815-1820 ◽  
Author(s):  
Akira Nozawa ◽  
Hideaki Nanamiya ◽  
Takuji Miyata ◽  
Nicole Linka ◽  
Yaeta Endo ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


1989 ◽  
Vol 92 (2) ◽  
pp. 137-146 ◽  
Author(s):  
D.M. Glover

Drosophila is an attractive organism in which to study both the rapid rounds of mitosis typical of embryonic development in many species, and the longer cell cycles of diploid tissues later in development. Mutations in genes essential for mitosis in Drosophila may result in lethality in late embryonic, larval or pupal stages of development. In addition, mutations in many genes required for the nuclear divisions of early embryogenesis have been found in screens for female sterility. The mitotic mutations have phenotypes indicative of lesions at a variety of mitotic stages. A combined molecular and genetic analysis of these genes has the potential to unravel the complex set of protein-protein interactions that occur in this dynamic process.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Qi Xu ◽  
Anumantha G. Kanthasamy ◽  
Manju B. Reddy

Iron may play an important role in Parkinson's disease (PD) since it can induce oxidative stress-dependent neurodegeneration. The objective of this study was to determine whether the iron chelator, phytic acid (IP6) can protect against 6-hydroxydopamine- (6-OHDA-) induced apoptosis in immortalized rat mesencephalic dopaminergic cells under normal and iron-excess conditions. Caspase-3 activity was increased about 6-fold after 6-OHDA treatment (compared to control; ) and 30 μmol/L IP6 pretreatment decreased it by 38% (). Similarly, a 63% protection () against 6-OHDA induced DNA fragmentation was observed with IP6 pretreatment. Under iron-excess condition, a 6-fold increase in caspase-3 activity () and a 42% increase in DNA fragmentation () with 6-OHDA treatment were decreased by 41% () and 27% (), respectively, with 30 μmol/L IP6. Together, our data suggest that IP6 protects against 6-OHDA-induced cell apoptosis in both normal and iron-excess conditions, and IP6 may offer neuroprotection in PD.


Sign in / Sign up

Export Citation Format

Share Document