scholarly journals Loss of Function but No Gain of Function Caused by Amino Acid Substitutions in the Hexapeptide of Hoxa1 In Vivo

2004 ◽  
Vol 24 (19) ◽  
pp. 8567-8575 ◽  
Author(s):  
Sophie Remacle ◽  
Leïla Abbas ◽  
Olivier De Backer ◽  
Nathalie Pacico ◽  
Anthony Gavalas ◽  
...  

ABSTRACT Homeodomain containing transcription factors of the Hox family play critical roles in patterning the anteroposterior embryonic body axis, as well as in controlling several steps of organogenesis. Several Hox proteins have been shown to cooperate with members of the Pbx family for the recognition and activation of identified target enhancers. Hox proteins contact Pbx via a conserved hexapeptide motif. Previous biochemical studies provided evidence that critical amino acid substitutions in the hexapeptide sequence of Hoxa1 abolish its interaction with Pbx. As a result, these substitutions also abolish Hoxa1 activity on known target enhancers in cellular models, suggesting that Hoxa1 activity relies on its capacity to interact with Pbx. Here, we show that mice with mutations in the Hoxa1 hexapeptide display hindbrain, cranial nerve, and skeletal defects highly reminiscent of those reported for the Hoxa1 loss of function. Since similar hexapeptide mutations in the mouse Hoxb8 and the Drosophila AbdA proteins result in activity modulation and gain of function, our data demonstrate that the functional importance of the hexapeptide in vivo differs according to the Hox proteins.

Author(s):  
Ashley M Buckle ◽  
Malcolm Buckle

In addition to the canonical loss-of-function mutations, mutations in proteins may additionally result in gain-of-function through the binary activation of cryptic ‘structural capacitance elements’. Our previous bioinformatic analysis allowed us to propose a new mechanism of protein evolution - structural capacitance – that arises via the generation of new elements of microstructure upon mutations that cause a disorder-to-order (DO) transition in previously disordered regions of proteins. Here we propose that the DO transition is a necessary follow-on from expected early codon-anticodon and tRNA acceptor stem-amino acid usage, via the accumulation of structural capacitance elements - reservoirs of disorder in proteins. We develop this argument further to posit that structural capacitance is an inherent consequence of the evolution of the genetic code.


2020 ◽  
Author(s):  
Maria C. Sterrett ◽  
Liz Enyenihi ◽  
Sara W. Leung ◽  
Laurie Hess ◽  
Sarah E. Strassler ◽  
...  

AbstractRNA exosomopathies, a growing family of tissue-specific diseases, are linked to missense mutations in genes encoding the structural subunits of the conserved 10-subunit exoribonuclease complex, the RNA exosome. Such mutations in the cap subunit gene EXOSC2 cause the novel syndrome SHRF (Short stature, Hearing loss, Retinitis pigmentosa and distinctive Facies). In contrast, exosomopathy mutations in the cap subunit gene EXOSC3 cause pontocerebellar hypoplasia type 1b (PCH1b). Though having strikingly different disease pathologies, EXOSC2 and EXOSC3 exosomopathy mutations result in amino acid substitutions in similar, conserved domains of the cap subunits, suggesting that these exosomopathy mutations have distinct consequences for RNA exosome function. We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by introducing the EXOSC2 mutations in the orthologous S. cerevisiae gene RRP4. The resulting rrp4 mutant cells have defects in cell growth and RNA exosome function. We detect significant transcriptomic changes in both coding and non-coding RNAs in the rrp4 variant, rrp4-G226D, which models EXOSC2 p.Gly198Asp. Comparing this rrp4-G226D mutant to the previously studied S. cerevisiae model of EXOSC3 PCH1b mutation, rrp40-W195R, reveals that these mutants have disparate effects on certain RNA targets, providing the first evidence for different mechanistic consequences of these exosomopathy mutations. Congruently, we detect specific negative genetic interactions between RNA exosome cofactor mutants and rrp4-G226D but not rrp40-W195R. These data provide insight into how SHRF mutations could alter the function of the RNA exosome and allow the first direct comparison of exosomopathy mutations that cause distinct pathologies.


2012 ◽  
Vol 11 (10) ◽  
pp. 1289-1299 ◽  
Author(s):  
Stephanie A. Flowers ◽  
Katherine S. Barker ◽  
Elizabeth L. Berkow ◽  
Geoffrey Toner ◽  
Sean G. Chadwick ◽  
...  

ABSTRACTInCandida albicans, Upc2 is a zinc-cluster transcription factor that targets genes, including those of the ergosterol biosynthesis pathway. To date, three documentedUPC2gain-of-function (GOF) mutations have been recovered from fluconazole-resistant clinical isolates that contribute to an increase inERG11expression and decreased fluconazole susceptibility. In a group of 63 isolates with reduced susceptibility to fluconazole, we found that 47 overexpressedERG11by at least 2-fold over the average expression levels in 3 unrelated fluconazole-susceptible strains. Of those 47 isolates, 29 contained a mutation inUPC2, whereas the remaining 18 isolates did not. Among the isolates containing mutations inUPC2, we recovered eight distinct mutations resulting in putative single amino acid substitutions: G648D, G648S, A643T, A643V, Y642F, G304R, A646V, and W478C. Seven of these resulted in increasedERG11expression, increased cellular ergosterol, and decreased susceptibility to fluconazole compared to the results for the wild-type strain. Genome-wide transcriptional analysis was performed for the four strongest Upc2 amino acid substitutions (A643V, G648D, G648S, and Y642F). Genes commonly upregulated by all four mutations included those involved in ergosterol biosynthesis, in oxidoreductase activity, the major facilitator efflux pump encoded by theMDR1gene, and the uncharacterized ATP binding cassette transporterCDR11. These findings demonstrate that gain-of-function mutations inUPC2are more prevalent among clinical isolates than previously thought and make a significant contribution to azole antifungal resistance, but the findings do not account forERG11overexpression in all such isolates ofC. albicans.


Vaccine ◽  
1996 ◽  
Vol 14 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Dino A. Feigelstock ◽  
Mauricio G. Mateu ◽  
M. Luz Valero ◽  
David Andreu ◽  
Esteban Domingo ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Praphulla C Shukla ◽  
Krishna K Singh ◽  
Fina Lovren ◽  
Yi Pan ◽  
Guilin Wang ◽  
...  

INTRODUCTION: Preservation of structure and function of the myocardium is critically dependent upon improving the survival of existing cardiomyocytes (CM), through strategies that limit CM apoptosis and DNA damage. BRCA1 is a tumor suppressor gene which functions to promote DNA repair, and protect cells against oxidative and genotoxic stress. We hypothesized that BRCA1 is a novel cellular target to limit CM apoptosis, and prevent aberrant cardiac remodeling. METHODS AND RESULTS: Experimental MI in mice caused a profound 16-fold upregulation in BRCA1 expression, which peaked at 72 hours (p<0.01). In vitro gain-of-function experiments demonstrated that Ad-BRCA1 overexpression protected neonatal rat CM against doxorubicin- and H 2 O 2 -induced apoptosis, as assessed by FACS (p<0.01) and activated caspase-3. Ad-BRCA1-expressing CM exhibited a profound reduction in p53 expression in response to doxorubicin and H 2 O 2 . Co-immunoprecipitation studies demonstrated a distinct physical interaction of BRCA1 with p53. Inhibition of p53, with pifithrin-alpha, blocked doxorubicin-induced CM apoptosis in a manner similar to BRCA1, but BRCA1-overexpressing CM, when treated with doxorubicin did not show further reduction with pifithrin-alpha, indicating an essential requirement of BRCA1 to modulate p53. In vivo gain-of-function studies demonstrated that systemic Ad-BRCA1 delivery completely prevented doxorubicin-induced cardiac dysfunction in mice (echocardiography, p<0.01). In vivo loss-of-function studies were performed in CM -specific BRCA1-KO mice (developed using Cre-lox P technology), which demonstrated marked cardiac dysfunction and mortality in response to doxorubicin administration (p< 0.01 vs. WT + Dox). CONCLUSIONS: We report for the first time an essential role of BRCA1 to limit CM apoptosis, and improve cardiac function in response to genotoxic and oxidative stress. Heart specific deletion of BRCA1 promotes severe systolic dysfunction, and limits survival. In addition to the immediate implications for cardiovascular repair, these data may have ramifications for individuals with BRCA1 mutations or cancer syndromes, particularly in the setting of adjuvant chemotherapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 464-464
Author(s):  
Christina J. Matheny ◽  
Takeshi Corpora ◽  
Maren E. Speck ◽  
Ting-Lei Gu ◽  
John H. Bushweller ◽  
...  

Abstract Runx1 and CBF β are the DNA-binding and non DNA-binding subunits of a core-binding factor that is required for hematopoiesis, and that is frequently mutated in leukemia. Runx2 is the DNA-binding subunit of a core-binding factor required for bone formation. Mono-allelic deletion, nonsense, frameshift, and missense mutations have been found in RUNX1 in familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML) and in myelodysplastic syndrome (MDS), and biallelic mutations in RUNX1 are found in 20% of AML M0 patients. Similar types of mono-allelic mutations have been found in RUNX2 in patients with cleidocranial dysplasia (CCD), an inherited skeletal syndrome. FPD/AML and CCD pedigrees have revealed varying degrees of disease severity depending on the nature of the specific mutation. Additionally, it has been observed that mutations involving amino acids in the DNA binding Runt domain that directly contact DNA are associated primarily with Runx1 and hematopoietic disorders, while mutations predicted to disrupt CBF β binding or the Runt domain structure are found only in Runx2 in CCD patients. We introduced 21 amino acid substitutions into the Runt domain of Runx1 identified in FPD/AML, AML M0, and CCD patients, and quantified their effects on DNA binding, heterodimerization with CBFβ, and the Runt domain structure using yeast one- and two-hybrid, quantitative electrophoretic mobility shift, heteronuclear single quantum correlation spectroscopy, and urea denaturation experiments. To address the impact on in vivo function, several of these point mutations were engineered into the endogenous Runx1 allele in mice. These five mutations include: R177X, R174Q, T149A, T161A, and L148F. R177X is found in FPD/AML patients and truncates Runx1 two amino acids before the C-terminal boundary of the Runt domain. R174Q (found in FPD/AML and CCD) disrupts DNA binding 1000-fold, but does not disrupt CBFb binding or perturb the Runt domain fold. T149A (found only in CCD) disrupts CBFβ binding 13-fold while T161A (not found in patients) disrupts CBFβ binding 40-fold. Both T149A and T161A slightly perturb the Runt domain fold, but do not alter DNA binding affinity. L148F (found in CCD) also disrupts the Runt domain fold, and decreases DNA binding. All animals heterozygous for these alleles are viable. Mice homozygous for R177X and R174Q die during gestation. Mice homozygous for the T149A and T161A mutations, on the other hand, are born at normal Mendelian frequencies, but 62% and 100%, respectively, die by or at three weeks of age from an undetermined cause. The effects of these mutations on hematopoietic progenitor and platelet numbers, both of which are affected in FPD/AML patients, will be presented. We conclude that mutations that affect CBFβ binding result in hypomorphic Runx1 alleles, while mutations involving DNA contacts result in more severe inactivation of Runx1 function. Thus FPD/AML, AML M0, and MDS require mutations that severely inactivate Runx1 function, while CCD can result from more subtle alterations in Runx2.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 181
Author(s):  
Yalcin Pisil ◽  
Zafer Yazici ◽  
Hisatoshi Shida ◽  
Shuzo Matsushita ◽  
Tomoyuki Miura

A tier 2 SHIV-MK38 strain was obtained after two in vivo passages of tier 1 SHIV-MK1. SHIV-MK38#818, cloned from the MK38 strain, was neutralisation-resistant, like the parental MK38 strain, to SHIV-infected monkey plasma (MP), HIV-1-infected human pooled plasma (HPP), and KD247 monoclonal antibody (mAb) (anti-V3 gp120 env). We investigated the mechanisms underlying the resistance of #818, specifically the amino acid substitutions that confer resistance to MK1. We introduced amino acid substitutions in the MK1 envelope by in vitro mutagenesis and then compared the neutralisation resistance to MP, HPP, and KD247 mAb with #818 in a neutralisation assay using TZM-bl cells. We selected 11 substitutions in the V1, V2, C2, V4, C4, and V5 regions based on the alignment of env of MK1 and #818. The neutralisation resistance of the mutant MK1s with 7 of 11 substitutions in the V1, C2, C4, and V5 regions did not change significantly. These substitutions did not alter any negative charges or N-glycans. The substitutions N169D and K187E, which added negative charges, and S190N in the V2 region of gp120 and A389T in V4, which created sites for N-glycan, conferred high neutralisation resistance. The combinations N169D+K187E, N169D+S190N, and N169D+A389T resulted in MK1 neutralisation resistance close to that of #818. The combinations without 169D were neutralisation-sensitive. Therefore, N169D is the most important substitution for neutralisation resistance. This study demonstrated that although the V3 region sequences of #818 and MK1 are the same, V3 binding antibodies cannot neutralise #818 pseudovirus. Instead, mutations in the V2 and V4 regions inhibit the neutralisation of anti-V3 antibodies. We hypothesised that 169D and 190N altered the MK1 Env conformation so that the V3 region is buried. Therefore, the V2 region may block KD247 from binding to the tip of the V3 region.


Sign in / Sign up

Export Citation Format

Share Document