acceptor stem
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 8)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
Long-Fei Wu ◽  
Meng Su ◽  
Ziwei Liu ◽  
Samuel J. Bjork ◽  
John D. Sutherland

2021 ◽  
Author(s):  
Abdullah ◽  
Furrukh Mehmood ◽  
Parviz Heidari ◽  
Ibrar Ahmed ◽  
Peter Poczai

AbstractThe chloroplast genome evolves through the course of evolution. Various types of mutational events are found within the chloroplast genome, including insertions-deletions (InDels), substitutions, inversions, gene rearrangement, and pseudogenization of genes. The pseudogenization of the trnT-GGU gene was previously reported in the Cryptomeria japonica (Cupressaceae), Pelargonium x hortorum (Geraniaceae), and in the two species of the tribe Gnaphalieae (Asteroideae, Asteraceae). Here, we performed a broad analysis of the trnT-GGU gene among the species of twelve subfamilies of Asteraceae and found pseudogenization of this gene is not limited to the two species of Gnaphalieae or the tribe Gnaphalieae. We report for the first time that this gene is pseudo in the species of three subfamilies of Asteraceae, including Gymnarrhenoideae, Cichorioideae and Asteroideae. The analyses of the species of 78 genera of Asteroideae revealed that this pseudogenization event is linked to the insertion within the 5′ acceptor stem and not linked to the habit, habitat, and geographical distribution of the plant.


2020 ◽  
Vol 131 (4) ◽  
pp. 398-404
Author(s):  
Kimberly A. Kripps ◽  
Marisa W. Friederich ◽  
Ting Chen ◽  
Austin A. Larson ◽  
David M. Mirsky ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuka Yashiro ◽  
Yuriko Sakaguchi ◽  
Tsutomu Suzuki ◽  
Kozo Tomita

Abstract Toxin-antitoxin systems in bacteria contribute to stress adaptation, dormancy, and persistence. AtaT, a type-II toxin in enterohemorrhagic E. coli, reportedly acetylates the α-amino group of the aminoacyl-moiety of initiator Met-tRNAfMet, thus inhibiting translation initiation. Here, we show that AtaT has a broader specificity for aminoacyl-tRNAs than initially claimed. AtaT efficiently acetylates Gly-tRNAGly, Trp-tRNATrp, Tyr-tRNATyr and Phe-tRNAPhe isoacceptors, in addition to Met-tRNAfMet, and inhibits global translation. AtaT interacts with the acceptor stem of tRNAfMet, and the consecutive G-C pairs in the bottom-half of the acceptor stem are required for acetylation. Consistently, tRNAGly, tRNATrp, tRNATyr and tRNAPhe also possess consecutive G-C base-pairs in the bottom halves of their acceptor stems. Furthermore, misaminoacylated valyl-tRNAfMet and isoleucyl-tRNAfMet are not acetylated by AtaT. Therefore, the substrate selection by AtaT is governed by the specific acceptor stem sequence and the properties of the aminoacyl-moiety of aminoacyl-tRNAs.


2020 ◽  
Vol 295 (48) ◽  
pp. 16180-16190
Author(s):  
Oscar Vargas-Rodriguez ◽  
Marina Bakhtina ◽  
Daniel McGowan ◽  
Jawad Abid ◽  
Yuki Goto ◽  
...  

Accurate translation of genetic information into proteins is vital for cell sustainability. ProXp-ala prevents proteome-wide Pro-to-Ala mutations by hydrolyzing misacylated Ala-tRNAPro, which is synthesized by prolyl-tRNA synthetase. Bacterial ProXp-ala was previously shown to combine a size-based exclusion mechanism with conformational and chemical selection for the recognition of the alanyl moiety, whereas tRNAPro is selected via recognition of tRNA acceptor-stem elements G72 and A73. The identity of these critical bases changed during evolution with eukaryotic cytosolic tRNAPro possessing a cytosine at the corresponding positions. The mechanism by which eukaryotic ProXp-ala adapted to these changes remains unknown. In this work, recognition of the aminoacyl moiety and tRNA acceptor stem by human (Homo sapiens, or Hs) ProXp-ala was examined. Enzymatic assays revealed that Hs ProXp-ala requires C72 and C73 in the context of Hs cytosolic tRNAPro for efficient deacylation of mischarged Ala-tRNAPro. The strong dependence on these bases prevents cross-species deacylation of bacterial Ala-tRNAPro or of Hs mitochondrial Ala-tRNAPro by the human enzyme. Similar to the bacterial enzyme, Hs ProXp-ala showed strong tRNA acceptor-stem recognition but differed in its amino acid specificity profile relative to bacterial ProXp-ala. Changes at conserved residues in both the Hs and bacterial ProXp-ala substrate-binding pockets modulated this specificity. These results illustrate how the mechanism of substrate selection diverged during the evolution of the ProXp-ala family, providing the first example of a trans-editing domain whose specificity evolved to adapt to changes in its tRNA substrate.


2020 ◽  
Author(s):  
Oscar Vargas-Rodriguez ◽  
Marina Bakhtina ◽  
Daniel McGowan ◽  
Jawad Abid ◽  
Yuki Goto ◽  
...  

AbstractAccurate translation of genetic information into proteins is vital for cell sustainability. ProXp-ala prevents proteome-wide Pro-to-Ala mutations by hydrolyzing misacylated Ala-tRNAPro, which is synthesized by prolyl-tRNA synthetase (ProRS). Bacterial ProXp-ala was previously shown to combine a size-based exclusion mechanism with conformational and chemical selection for the recognition of the alanyl moiety, while tRNAPro is selected via recognition of tRNA acceptor stem elements G72 and A73. The identity of these critical bases changed during evolution with eukaryotic cytosolic tRNAPro possessing a cytosine at the corresponding positions. The mechanism by which eukaryotic ProXp-ala adapted to these changes remains unknown. In this work, recognition of the aminoacyl moiety and tRNA acceptor stem by human (Hs) ProXp-ala was examined. Enzymatic assays revealed that Hs ProXp-ala requires C72 and C73 in the context of Hs cytosolic tRNAPro for efficient deacylation of mischarged Ala-tRNAPro. The strong dependence on these bases prevents cross-species deacylation of bacterial Ala-tRNAPro or of Hs mitochondrial Ala-tRNAPro by the human enzyme. Similar to the bacterial enzyme, Hs ProXp-ala showed strong tRNA acceptor-stem recognition but differed in its amino acid specificity profile relative to bacterial ProXp-ala. Changes at conserved residues in both the Hs and bacterial ProXp-ala substrate binding pockets modulated this specificity. These results illustrate how the mechanism of substrate selection diverged during the evolution of the ProXp-ala family and provides the first example of a trans-editing domain whose specificity evolved to adapt to changes in its tRNA substrate.


Author(s):  
Ashley M Buckle ◽  
Malcolm Buckle

In addition to the canonical loss-of-function mutations, mutations in proteins may additionally result in gain-of-function through the binary activation of cryptic ‘structural capacitance elements’. Our previous bioinformatic analysis allowed us to propose a new mechanism of protein evolution - structural capacitance – that arises via the generation of new elements of microstructure upon mutations that cause a disorder-to-order (DO) transition in previously disordered regions of proteins. Here we propose that the DO transition is a necessary follow-on from expected early codon-anticodon and tRNA acceptor stem-amino acid usage, via the accumulation of structural capacitance elements - reservoirs of disorder in proteins. We develop this argument further to posit that structural capacitance is an inherent consequence of the evolution of the genetic code.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 612 ◽  
Author(s):  
Matthew D. Berg ◽  
Julie Genereaux ◽  
Yanrui Zhu ◽  
Safee Mian ◽  
Gregory B. Gloor ◽  
...  

The molecular mechanisms of translation are highly conserved in all organisms indicative of a single evolutionary origin. This includes the molecular interactions of tRNAs with their cognate aminoacyl-tRNA synthetase, which must be precise to ensure the specificity of the process. For many tRNAs, the anticodon is a major component of the specificity. This is not the case for the aminoacylation of alanine and serine to their cognate tRNAs. Rather, aminoacylation relies on other features of the tRNA. For tRNASer, a key specificity feature is the variable arm, which is positioned between the anticodon arm and the T-arm. The variable arm is conserved from yeast to human. This work was initiated to determine if the structure/function of tRNASer has been conserved from Saccharomyces cerevisiae to human. We did this by detecting mistranslation in yeast cells with tRNASer derivatives having the UGA anticodon converted to UGG for proline. Despite being nearly identical in everything except the acceptor stem, human tRNASer is less active than yeast tRNASer. A chimeric tRNA with the human acceptor stem and other sequences from the yeast molecule acts similarly to the human tRNASer. The 3:70 base pair in the acceptor stem (C:G in yeast and A:U in humans) is a prime determinant of the specificity. Consistent with the functional difference of yeast and human tRNASer resulting from subtle changes in the specificity of their respective SerRS enzymes, the functionality of the human and chimeric tRNASerUGG molecules was enhanced when human SerRS was introduced into yeast. Residues in motif 2 of the aminoacylation domain of SerRS likely participated in the species-specific differences. Trp290 in yeast SerRS (Arg313 in humans) found in motif 2 is proximal to base 70 in models of the tRNA-synthetase interaction. Altering this motif 2 sequence of hSerRS to the yeast sequence decreases the activity of the human enzyme with human tRNASer, supporting the coadaptation of motif 2 loop–acceptor stem interactions.


Sign in / Sign up

Export Citation Format

Share Document