scholarly journals Two new double-stranded RNA molecules showing non-mendelian inheritance and heat inducibility in Saccharomyces cerevisiae.

1984 ◽  
Vol 4 (1) ◽  
pp. 181-187 ◽  
Author(s):  
M Wesolowski ◽  
R B Wickner

Certain strains of Saccharomyces cerevisiae were found to have a complex nuclear defect (designated clo-) that makes cells unable to maintain some L-B and some L-C double-stranded RNAs at 25 degrees C. The clo- strains were not defective in maintenance of L-A, M1, or M2 double-stranded RNAs. Most clo-strains lacking L and M carry small amounts of two double-stranded RNA species intermediate in size between L and M and denoted T (2.7 kilobase pairs) and W (2.25 kilobase pairs). Some strains carry both T and W, some carry neither, and some carry only W; no strains carrying only T have been found. Both T and W show 4+:0 segregation in meiosis and efficient transmission by cytoplasmic mixing (cytoduction), indicating that they are non-Mendelian genetic elements. T and W do not cross-hybridize with each other or with L-A, L-B, L-C, M1, M2, or chromosomal DNA. T and W are apparently distinct from other known non-Mendelian genetic elements (2mu DNA, [rho], [psi], 20S RNA, [URE3]). In most strains the copy number of both T and W is increased about 10-fold by the growth of cells at 37 degrees C. This heat inducibility of T and W is under control of a cytoplasmic gene. T and W double-stranded RNAs are not found in a purified L-containing virus-like particle preparation from a strain containing L-B, T, and W double-stranded RNAs. The role, if any, of T or W in the killer systems is not known.

1984 ◽  
Vol 4 (1) ◽  
pp. 181-187
Author(s):  
M Wesolowski ◽  
R B Wickner

Certain strains of Saccharomyces cerevisiae were found to have a complex nuclear defect (designated clo-) that makes cells unable to maintain some L-B and some L-C double-stranded RNAs at 25 degrees C. The clo- strains were not defective in maintenance of L-A, M1, or M2 double-stranded RNAs. Most clo-strains lacking L and M carry small amounts of two double-stranded RNA species intermediate in size between L and M and denoted T (2.7 kilobase pairs) and W (2.25 kilobase pairs). Some strains carry both T and W, some carry neither, and some carry only W; no strains carrying only T have been found. Both T and W show 4+:0 segregation in meiosis and efficient transmission by cytoplasmic mixing (cytoduction), indicating that they are non-Mendelian genetic elements. T and W do not cross-hybridize with each other or with L-A, L-B, L-C, M1, M2, or chromosomal DNA. T and W are apparently distinct from other known non-Mendelian genetic elements (2mu DNA, [rho], [psi], 20S RNA, [URE3]). In most strains the copy number of both T and W is increased about 10-fold by the growth of cells at 37 degrees C. This heat inducibility of T and W is under control of a cytoplasmic gene. T and W double-stranded RNAs are not found in a purified L-containing virus-like particle preparation from a strain containing L-B, T, and W double-stranded RNAs. The role, if any, of T or W in the killer systems is not known.


1983 ◽  
Vol 3 (4) ◽  
pp. 654-661 ◽  
Author(s):  
R B Wickner

M1 and M2 double-stranded RNAs (dsRNAs) code for the K1R1 and K2R2 killer toxin and resistance functions, respectively. Natural variants of a larger dsRNA (L-A) carry various combinations of the [EXL], [HOK], and [NEX] genes, which affect the K1 and K2 killer systems. Other dsRNAs, the same size as L-A, called L-B and L-C, are often present with L-A. We show that K1 killer strains have [HOK] and [NEX] but not [EXL] on their L-A (in disagreement with Field et al., Cell 31:193-200, 1982). These strains also carry other L-size molecules detectable after heat-curing has eliminated L-A. The exclusion of M2 dsRNA observed on mating K2 strains with K1 strains is due to the M1 dsRNA (not the L-A dsRNA as claimed by Field et al.) in the K1 strains. Four independent mutants of a [KIL-k2] [NEX-o] [HOK-o] strain were selected for resistance to [EXL] exclusion of M2 ([EXLR] phenotype). The [EXLR] phenotype showed non-Mendelian inheritance in each case, and these mutants had simultaneously each acquired [HOK]. The mutations were located on L-A and not on M2, and did not confer resistance to M1 exclusion of M2.


1983 ◽  
Vol 3 (4) ◽  
pp. 654-661
Author(s):  
R B Wickner

M1 and M2 double-stranded RNAs (dsRNAs) code for the K1R1 and K2R2 killer toxin and resistance functions, respectively. Natural variants of a larger dsRNA (L-A) carry various combinations of the [EXL], [HOK], and [NEX] genes, which affect the K1 and K2 killer systems. Other dsRNAs, the same size as L-A, called L-B and L-C, are often present with L-A. We show that K1 killer strains have [HOK] and [NEX] but not [EXL] on their L-A (in disagreement with Field et al., Cell 31:193-200, 1982). These strains also carry other L-size molecules detectable after heat-curing has eliminated L-A. The exclusion of M2 dsRNA observed on mating K2 strains with K1 strains is due to the M1 dsRNA (not the L-A dsRNA as claimed by Field et al.) in the K1 strains. Four independent mutants of a [KIL-k2] [NEX-o] [HOK-o] strain were selected for resistance to [EXL] exclusion of M2 ([EXLR] phenotype). The [EXLR] phenotype showed non-Mendelian inheritance in each case, and these mutants had simultaneously each acquired [HOK]. The mutations were located on L-A and not on M2, and did not confer resistance to M1 exclusion of M2.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 789
Author(s):  
Athanasios Dalakouras ◽  
Ioannis Ganopoulos

Exogenous application of RNA molecules is a potent method to trigger RNA interference (RNAi) in plants in a transgene-free manner. So far, all exogenous RNAi (exo-RNAi) applications have aimed to trigger mRNA degradation of a given target. However, the issue of concomitant epigenetic changes was never addressed. Here, we report for the first time that high-pressure spraying of dsRNAs can trigger de novo methylation of promoter sequences in plants.


2001 ◽  
Vol 12 (11) ◽  
pp. 3317-3327 ◽  
Author(s):  
Arkadi Poloumienko ◽  
Ann Dershowitz ◽  
Jitakshi De ◽  
Carol S. Newlon

In Saccharomyces cerevisiae chromosomal DNA replication initiates at intervals of ∼40 kb and depends upon the activity of autonomously replicating sequence (ARS) elements. The identification of ARS elements and analysis of their function as chromosomal replication origins requires the use of functional assays because they are not sufficiently similar to identify by DNA sequence analysis. To complete the systematic identification of ARS elements onS. cerevisiae chromosome III, overlapping clones covering 140 kb of the right arm were tested for their ability to promote extrachromosomal maintenance of plasmids. Examination of chromosomal replication intermediates of each of the seven ARS elements identified revealed that their efficiencies of use as chromosomal replication origins varied widely, with four ARS elements active in ≤10% of cells in the population and two ARS elements active in ≥90% of the population. Together with our previous analysis of a 200-kb region of chromosome III, these data provide the first complete analysis of ARS elements and DNA replication origins on an entire eukaryotic chromosome.


1986 ◽  
Vol 6 (5) ◽  
pp. 1552-1561
Author(s):  
R Esteban ◽  
R B Wickner

Killer strains of Saccharomyces cerevisiae bear at least two different double-stranded RNAs (dsRNAs) encapsidated in 39-nm viruslike particles (VLPs) of which the major coat protein is coded by the larger RNA (L-A dsRNA). The smaller dsRNA (M1 or M2) encodes an extracellular protein toxin (K1 or K2 toxin). Based on their densities on CsCl gradients, L-A- and M1-containing particles can be separated. Using this method, we detected a new type of M1 dsRNA-containing VLP (M1-H VLP, for heavy) that has a higher density than those previously reported (M1-L VLP, for light). M1-H and M1-L VLPs are present together in the same strains and in all those we tested. M1-H, M1-L, and L-A VLPs all have the same types of proteins in the same approximate proportions, but whereas L-A VLPs and M1-L VLPs have one dsRNA molecule per particle, M1-H VLPs contain two M1 dsRNA molecules per particle. Their RNA polymerase produces mainly plus single strands that are all extruded in the case of M1-H particles but are partially retained inside the M1-L particles to be used later for dsRNA synthesis. We show that M1-H VLPs are formed in vitro from the M1-L VLPs. We also show that the peak of M1 dsRNA synthesis is in fractions lighter than M1-L VLPs, presumably those carrying only a single plus M1 strand. We suggest that VLPs carrying two M1 dsRNAs (each 1.8 kilobases) can exist because the particle is designed to carry one L-A dsRNA (4.5 kilobases).


1992 ◽  
Vol 12 (8) ◽  
pp. 3390-3398
Author(s):  
A Blanc ◽  
C Goyer ◽  
N Sonenberg

The eukaryotic mRNA 5' cap structure m7GpppX (where X is any nucleotide) interacts with a number of cellular proteins. Several of these proteins were studied in mammalian, yeast, and drosophila cells and found to be involved in translation initiation. Here we describe a novel cap-binding protein, the coat protein of L-A, a double-stranded RNA virus that is persistently maintained in many Saccharomyces cerevisiae strains. The results also suggest that the coat protein of a related double-stranded RNA virus (L-BC) is likewise a cap-binding protein. Strikingly, in contrast to the cellular cap-binding proteins, the interaction between the L-A virus coat protein and the cap structure is through a covalent bond.


1984 ◽  
Vol 4 (1) ◽  
pp. 188-194
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


Sign in / Sign up

Export Citation Format

Share Document