particle preparation
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5389
Author(s):  
Anna Florczak ◽  
Tomasz Deptuch ◽  
Kamil Kucharczyk ◽  
Hanna Dams-Kozlowska

For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.


2021 ◽  
Author(s):  
Nanami Kikuchi ◽  
Or Willinger ◽  
Naor Granik ◽  
Noa Navon ◽  
Shanny Ackerman ◽  
...  

We present a cell-free assay for rapid screening of candidate inhibitors of protein binding, focusing on inhibition of the interaction between the SARS-CoV-2 Spike receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (hACE2). The assay has two components: fluorescent polystyrene particles covalently coated with RBD, termed virion-particles (v-particles), and fluorescently-labeled hACE2 (hACE2F) that binds the v-particles. When incubated with an inhibitor, v-particle - hACE2F binding is diminished, resulting in a reduction in the fluorescent signal of bound hACE2F relative to the non-inhibitor control, which can be measured via flow cytometry or fluorescence microscopy. We determine the amount of RBD needed for v-particle preparation, v-particle incubation time with hACE2F, hACE2F detection limit, and specificity of v-particle binding to hACE2F. We measure the dose response of the v-particles to a known inhibitor. Finally, we demonstrate that RNA-hACE2F granules trap v-particles effectively, providing a basis for potential RNA-hACE2F therapeutics.


2021 ◽  
Vol 18 ◽  
Author(s):  
Shulei Duan ◽  
Jingfu Jia ◽  
Biao Hong ◽  
Jie Zhou ◽  
Yi Zhang ◽  
...  

Introduction: The amentoflavone (AMF) loaded polymeric sub-micron particles were prepared using supercritical antisolvent (SAS) technology with the aim of improving the anticancer activity of AMF. Materials and Methods: Zein and phospholipid mixtures composed of hydrogenated phosphatidylcholine (HPC) and egg lecithin (EPC) were used as carrier materials and, the effects of carrier composition on the product morphology and drug release behavior were investigated. When the mass ratio of Zein/HPC/EPC was 7/2/1, the AMF loaded particles were spherical shape and sub-micron sized around 400 nm, with a drug load of 4.3±0.3 w% and entrapment efficacy of 87.8±1.8%. The in vitro drug release assay showed that adding EPC in the wall materials could improve the dispersion stability of the released AMF in an aqueous medium, and the introduction of HPC could accelerate the drug release speed. Results: MTT assay demonstrated that AMF-loaded micron particles have an improved inhibitory effect on A375 cells, whose IC50 was 37.39μg/ml, compared with that of free AMF(130.2μg/ml). Conclusion: It proved that the AMF loaded sub-micron particles prepared by SAS were a prospective strategy to improve the antitumor activity of AMF, and possibly promote the clinical use of AMF preparations.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2022
Author(s):  
Teresa Basinska ◽  
Mariusz Gadzinowski ◽  
Damian Mickiewicz ◽  
Stanislaw Slomkowski

Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.


2021 ◽  
Vol 535 ◽  
pp. 147688
Author(s):  
Yonghao Tan ◽  
Lin Sha ◽  
Jun Qu ◽  
Jinqi Jiang ◽  
Jie Ren ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Shuang Zhao ◽  
Marc Riedel ◽  
Javier Patarroyo ◽  
Neus Bastus ◽  
Victor Puntes ◽  
...  

Enhancement of the photocatalytic current of CeO2 NPs upon their linkage to plasmonic Au NPs.


Sign in / Sign up

Export Citation Format

Share Document