scholarly journals Cloning and mapping of Saccharomyces cerevisiae photoreactivation gene PHR1.

1984 ◽  
Vol 4 (9) ◽  
pp. 1864-1870 ◽  
Author(s):  
D Schild ◽  
J Johnston ◽  
C Chang ◽  
R K Mortimer

The yeast Saccharomyces cerevisiae, like most organisms, is able to directly repair pyrimidine dimers by using a photoreactivating enzyme and visible light. Cells carrying the phr1 mutation were shown previously to be unable to photoreactivate dimers, but neither the map position nor the primary gene product of the PHR1 gene has been determined. We have cloned this gene and determined its map position. A plasmid containing a 6.4-kilobase yeast DNA insert has been isolated and shown to restore photoreactivation in a phr1 strain. A 3.1-kilobase subclone has also been shown to complement phr1. The original plasmid was targeted to integrate into chromosomal DNA at a site homologous to the insert by cutting within the insert. Two of these integrants have been mapped on the right arm of chromosome XV; the integrants have been further mapped at ca. 13 centimorgans from prt1. It has also been independently determined that phr1 maps at this location. Thus, we have determined the map position of PHR1 and also have shown that the plasmid contains PHR1 rather than a suppressor of the phr1 mutation.

1984 ◽  
Vol 4 (9) ◽  
pp. 1864-1870
Author(s):  
D Schild ◽  
J Johnston ◽  
C Chang ◽  
R K Mortimer

The yeast Saccharomyces cerevisiae, like most organisms, is able to directly repair pyrimidine dimers by using a photoreactivating enzyme and visible light. Cells carrying the phr1 mutation were shown previously to be unable to photoreactivate dimers, but neither the map position nor the primary gene product of the PHR1 gene has been determined. We have cloned this gene and determined its map position. A plasmid containing a 6.4-kilobase yeast DNA insert has been isolated and shown to restore photoreactivation in a phr1 strain. A 3.1-kilobase subclone has also been shown to complement phr1. The original plasmid was targeted to integrate into chromosomal DNA at a site homologous to the insert by cutting within the insert. Two of these integrants have been mapped on the right arm of chromosome XV; the integrants have been further mapped at ca. 13 centimorgans from prt1. It has also been independently determined that phr1 maps at this location. Thus, we have determined the map position of PHR1 and also have shown that the plasmid contains PHR1 rather than a suppressor of the phr1 mutation.


Tsitologiya ◽  
2018 ◽  
Vol 60 (7) ◽  
pp. 555-557 ◽  
Author(s):  
E. A. Alekseeva ◽  
◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev ◽  
...  

1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164 ◽  
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


1996 ◽  
Vol 16 (6) ◽  
pp. 2719-2727 ◽  
Author(s):  
S Silve ◽  
P Leplatois ◽  
A Josse ◽  
P H Dupuy ◽  
C Lanau ◽  
...  

SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 531-540
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II (ADH2) gene of the yeast, Saccharomyces cerevisiae, is not transcribed during growth on fermentable carbon sources such as glucose. Growth of yeast cells in a medium containing only nonfermentable carbon sources leads to a marked increase or derepression of ADH2 expression. The recessive mutation, adr6-1, leads to an inability to fully derepress ADH2 expression and to an inability to sporulate. The ADR6 gene product appears to act directly or indirectly on ADH2 sequences 3' to or including the presumptive TATAA box. The upstream activating sequence (UAS) located 5' to the TATAA box is not required for the Adr6- phenotype. Here, we describe the isolation of a recombinant plasmid containing the wild-type ADR6 gene. ADR6 codes for a 4.4-kb RNA which is present during growth both on glucose and on nonfermentable carbon sources. Disruption of the ADR6 transcription unit led to viable cells with decreased ADHII activity and an inability to sporulate. This indicates that both phenotypes result from mutations within a single gene and that the adr6-1 allele was representative of mutations at this locus. The ADR6 gene mapped to the left arm of chromosome XVI at a site 18 centimorgans from the centromere.


1992 ◽  
Vol 12 (6) ◽  
pp. 2653-2661
Author(s):  
E Gross ◽  
I Marbach ◽  
D Engelberg ◽  
M Segal ◽  
G Simchen ◽  
...  

The CDC25 gene product of the yeast Saccharomyces cerevisiae has been shown to be a positive regulator of the Ras protein. The high degree of homology between yeast RAS and the mammalian proto-oncogene ras suggests a possible resemblance between the mammalian regulator of Ras and the regulator of the yeast Ras (Cdc25). On the basis of this assumption, we have raised antibodies against the conserved C-terminal domain of the Cdc25 protein in order to identify its mammalian homologs. Anti-Cdc25 antibodies raised against a beta-galactosidase-Cdc25 fusion protein were purified by immunoaffinity chromatography and were shown by immunoblotting to specifically recognize the Cdc25 portion of the antigen and a truncated Cdc25 protein, also expressed in bacteria. These antibodies were shown both by immunoblotting and by immunoprecipitation to recognize the CDC25 gene product in wild-type strains and in strains overexpressing Cdc25. The anti-Cdc25 antibodies potently inhibited the guanyl nucleotide-dependent and, approximately 3-fold less potently, the Mn(2+)-dependent adenylyl cyclase activity in S. cerevisiae. The anti-Cdc25 antibodies do not inhibit cyclase activity in a strain harboring RAS2Val-19 and lacking the CDC25 gene product. These results support the view that Cdc25, Ras2, and Cdc35/Cyr1 proteins are associated in a complex. Using these antibodies, we were able to define the conditions to completely solubilize the Cdc25 protein. The results suggest that the Cdc25 protein is tightly associated with the membrane but is not an intrinsic membrane protein, since only EDTA at pH 12 can solubilize the protein. The anti-Cdc25 antibodies strongly cross-reacted with the C-terminal domain of the Cdc25 yeast homolog, Sdc25. Most interestingly, these antibodies also cross-reacted with mammalian proteins of approximately 150 kDa from various tissues of several species of animals. These interactions were specifically blocked by the beta-galactosidase-Cdc25 fusion protein.


1984 ◽  
Vol 4 (1) ◽  
pp. 49-53
Author(s):  
J L Celenza ◽  
M Carlson

A functional SNF1 gene product is required to derepress expression of many glucose-repressible genes in Saccharomyces cerevisiae. Strains carrying a snf1 mutation are unable to grow on sucrose, galactose, maltose, melibiose, or nonfermentable carbon sources; utilization of these carbon sources is regulated by glucose repression. The inability of snf1 mutants to utilize sucrose results from failure to derepress expression of the structural gene for invertase at the RNA level. We isolated recombinant plasmids carrying the SNF1 gene by complementation of the snf1 defect in S. cerevisiae. A 3.5-kilobase region is common to the DNA segments cloned in five different plasmids. Transformation of S. cerevisiae with an integrating vector carrying a segment of the cloned DNA resulted in integration of the plasmid at the SNF1 locus. This result indicates that the cloned DNA is homologous to sequences at the SNF1 locus. By mapping a plasmid marker linked to SNF1 in this transformant, we showed that the SNF1 gene is located on chromosome IV. We then mapped snf1 to a position 5.6 centimorgans distal to rna3 on the right arm; snf1 is not extremely closely linked to any previously mapped mutation.


1993 ◽  
Vol 120 (5) ◽  
pp. 1203-1215 ◽  
Author(s):  
K Kuchler ◽  
H G Dohlman ◽  
J Thorner

STE6 gene product is required for secretion of the lipopeptide mating pheromone a-factor by Saccharomyces cerevisiae MATa cells. Radiolabeling and immunoprecipitation, either with specific polyclonal antibodies raised against a TrpE-Ste6 fusion protein or with mAbs that recognize c-myc epitopes in fully functional epitope-tagged Ste6 derivatives, demonstrated that Ste6 is a 145-kD phosphoprotein. Subcellular fractionation, various extraction procedures, and immunoblotting showed that Ste6 is an intrinsic plasma membrane-associated protein. The apparent molecular weight of Ste6 was unaffected by tunicamycin treatment, and the radiolabeled protein did not bind to concanavalin A, indicating that Ste6 is not glycosylated and that glycosylation is not required either for its membrane delivery or its function. The amino acid sequence of Ste6 predicts two ATP-binding folds; correspondingly, Ste6 was photoaffinity-labeled specifically with 8-azido-[alpha-32P]ATP. Indirect immunofluorescence revealed that in exponentially growing MATa cells, the majority of Ste6 showed a patchy distribution within the plasma membrane, but a significant fraction was found concentrated in a number of vesicle-like bodies subtending the plasma membrane. In contrast, in MATa cells exposed to the mating pheromone alpha-factor, which markedly induced Ste6 production, the majority of Ste6 was incorporated into the plasma membrane within the growing tip of the elongating cells. The highly localized insertion of this transporter may establish pronounced anisotropy in a-factor secretion from the MATa cell, and thereby may contribute to the establishment of the cell polarity which restricts partner selection and cell fusion during mating to one MAT alpha cell.


1995 ◽  
Vol 15 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
Z Guo ◽  
F Sherman

It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.


2020 ◽  
Vol 8 (3) ◽  
pp. 321 ◽  
Author(s):  
James T. Arnone

The growing global population and developing world has put a strain on non-renewable natural resources, such as fuels. The shift to renewable sources will, thus, help meet demands, often through the modification of existing biosynthetic pathways or the introduction of novel pathways into non-native species. There are several useful biosynthetic pathways endogenous to organisms that are not conducive for the scale-up necessary for industrial use. The use of genetic and synthetic biological approaches to engineer these pathways in non-native organisms can help ameliorate these challenges. The budding yeast Saccharomyces cerevisiae offers several advantages for genetic engineering for this purpose due to its widespread use as a model system studied by many researchers. The focus of this review is to present a primer on understanding genomic considerations prior to genetic modification and manipulation of S. cerevisiae. The choice of a site for genetic manipulation can have broad implications on transcription throughout a region and this review will present the current understanding of position effects on transcription.


Sign in / Sign up

Export Citation Format

Share Document