scholarly journals Effect of dimethyl sulfoxide on human carcinoma cells, inhibition of plasminogen activator synthesis, change in cell morphology, and alteration of response to cholera toxin.

1985 ◽  
Vol 5 (12) ◽  
pp. 3552-3559 ◽  
Author(s):  
L Ossowski ◽  
D Belin

Human carcinoma HEp-3 lost its tumorigenic and metastatic potential upon prolonged culture in vitro. This change was accompanied by a reduced production of plasminogen activator (PA) of the urokinase type (uPA), which is secreted by HEp-3 cells, a change in response to effectors that modulate uPA production, and an alteration of cell morphology. Similar but more rapid changes occurred when malignant HEp-3 cells were exposed to dimethyl sulfoxide (DMSO). uPA activity in the culture medium dropped below 50% of the control level within 6 h after the addition of DMSO and became undetectable after 24 h of treatment. This drop in uPA activity was not caused by an increased production of PA inhibitors. The cell-associated uPA decreased to 25 to 30% of the control level within 6 h of DMSO treatment and remained at this level for at least 96 h; the reduced uPA production was partially accounted for by a rapid decrease in the functional and chemical concentration of uPA mRNA. In contrast, the concentrations of most of the abundant mRNA species did not appear to be significantly affected, and cell growth was only slightly inhibited in the presence of DMSO. Malignant HEp-3 cells treated with DMSO responded to cholera toxin with an enhanced production of uPA, and their morphology became indistinguishable from that of nonmalignant HEp-3 cells grown in vitro for prolonged periods of time. All of the above changes were fully and rapidly reversible. The inhibitory effect of DMSO on PA production appears to be specific for uPA of human cell lines.

1985 ◽  
Vol 5 (12) ◽  
pp. 3552-3559
Author(s):  
L Ossowski ◽  
D Belin

Human carcinoma HEp-3 lost its tumorigenic and metastatic potential upon prolonged culture in vitro. This change was accompanied by a reduced production of plasminogen activator (PA) of the urokinase type (uPA), which is secreted by HEp-3 cells, a change in response to effectors that modulate uPA production, and an alteration of cell morphology. Similar but more rapid changes occurred when malignant HEp-3 cells were exposed to dimethyl sulfoxide (DMSO). uPA activity in the culture medium dropped below 50% of the control level within 6 h after the addition of DMSO and became undetectable after 24 h of treatment. This drop in uPA activity was not caused by an increased production of PA inhibitors. The cell-associated uPA decreased to 25 to 30% of the control level within 6 h of DMSO treatment and remained at this level for at least 96 h; the reduced uPA production was partially accounted for by a rapid decrease in the functional and chemical concentration of uPA mRNA. In contrast, the concentrations of most of the abundant mRNA species did not appear to be significantly affected, and cell growth was only slightly inhibited in the presence of DMSO. Malignant HEp-3 cells treated with DMSO responded to cholera toxin with an enhanced production of uPA, and their morphology became indistinguishable from that of nonmalignant HEp-3 cells grown in vitro for prolonged periods of time. All of the above changes were fully and rapidly reversible. The inhibitory effect of DMSO on PA production appears to be specific for uPA of human cell lines.


2004 ◽  
Vol 91 (03) ◽  
pp. 473-479 ◽  
Author(s):  
Ana Guimarães ◽  
Dingeman Rijken

SummaryTAFIa was shown to attenuate fibrinolysis. In our in vitro study, we investigated how the inhibitory effect of TAFIa depended on the type and concentration of the plasminogen activator (PA). We measured PA-mediated lysis times of plasma clots under conditions of maximal TAFI activation by thrombin-thrombomodulin in the absence and presence of potato carboxypeptidase inhibitor. Seven different PAs were compared comprising both tPA-related (tPA, TNK-tPA, DSPA), bacterial PA-related (staphylokinase and APSAC) and urokinase-related (tcu-PA and k2tu-PA) PAs. The lysis times and the retardation factor were plotted against the PA concentration. The retardation factor plots were bell-shaped. At low PA concentrations, the retardation factor was low, probably due to the limited stability of TAFIa. At intermediate PA concentrations the retardation factor was maximal (3-6 depending on the PA), with TNK-tPA, APSAC and DSPA exhibiting the strongest effect. At high PA concentrations, the retardation factor was again low, possibly due to inactivation of TAFIa by plasmin or to a complete conversion of glu-plasminogen into lys-plasminogen. Using individual plasmas with a reduced plasmin inhibitor activity (plasmin inhibitor Enschede) the bell-shaped curve of the retardation factor shifted towards lower tPA and DSPA concentrations, but the height did not decrease. In conclusion, TAFIa delays the lysis of plasma clots mediated by all the plasminogen activators tested. This delay is dependent on the type and concentration of the plasminogen activator, but not on the fibrin specificity of the plasminogen activator. Furthermore, plasmin inhibitor does not play a significant role in the inhibition of plasma clot lysis by TAFI.


1995 ◽  
Vol 306 (3) ◽  
pp. 765-769 ◽  
Author(s):  
R Levistre ◽  
M Berguerand ◽  
G Bereziat ◽  
J Masliah

Pretreatment of alveolar macrophages with cholera toxin inhibits the release of arachidonic acid induced by the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine. The results presented here show that cholera toxin might exert its inhibitory effect through the phosphorylation of Gi alpha by protein kinase A (PKA). (1) Gi-proteins from cells pretreated with cholera toxin showed parallel increases in their sensitivity to ADP-ribosylation by toxins in vitro and in Gi alpha phosphorylation. By contrast, the Gi alpha concentration was unchanged. (2) Cholera toxin pretreatment also decreased the functional activity of Gi, as assessed by the inhibition (80%) of agonist-induced binding of guanosine-5′-[gamma-thio]triphosphate (GTP[gamma S]). (3) These effects of cholera toxin were blocked by a specific PKA inhibitor, N-(2-[methyl-amino]ethyl)-3-isoquinolinesulphonamide dihydrochloride (H8) and mimicked by a cyclic AMP (cAMP) analogue and a phosphatase inhibitor. (4) Gi alpha was also phosphorylated in vitro by the catalytic subunit of PKA. In contrast with other cell systems, the stimulation of protein kinase C seems to have no effect on the sensitivity of Gi to ADP-ribosylation or on its phosphorylation. Therefore, the phosphorylation of Gi-proteins by PKA seems to be the actual target of the negative control of arachidonic acid release via the cAMP-mediated pathway.


1996 ◽  
Vol 270 (5) ◽  
pp. R1141-R1147 ◽  
Author(s):  
C. Hogstrand ◽  
P. M. Verbost ◽  
S. E. Bonga ◽  
C. M. Wood

The uptake mechanism of Zn2+ through the gill epithelium of freshwater rainbow trout was investigated both in intact animals and in isolated basolateral membranes. Involvement of the apical Ca2+ uptake sites in Zn2+ uptake was examined in vivo by pharmacological manipulation of the apical Ca2+ permeability. The apical entries of Ca2+ and Zn2+, but not Na2+ and Cl-, were inhibited by addition of La to the water. Addition of 1.0 microM La reduced the influxes of Ca2+ and Zn2+ to 22 +/- 3 and 53 +/- 7% (mean +/- SE) of the control value, respectively. Injection of CaCl2 also reduced the branchial influxes of Ca2+ and Zn2+. This treatment decreased the influx of Ca2- to 45 +/- 4% of the control level and the Zn2+ influx to 68 +/- 5%. These results strongly imply that Zn2+ passes across the apical membrane of the chloride cells of the gills via the same pathway as Ca2+. The presence of an active basolateral transporter for Zn2+ was investigated in vitro on isolated basolateral membranes. There was no ATP-dependent or Na2+(-)gradient driven transport of Zn2+ at physiological Zn2+ activities. The same system was used to study potential effects of Zn2+ on the basolateral Ca2+(-)adenosinetri-phosphatase. Zn2+ was found to be a potent blocker of this transporter, causing a mixed inhibitory effect on the ATP driven Ca2+ transport at a free Zn2+ activity of 100 pM.


1989 ◽  
Vol 62 (2) ◽  
pp. 269-284 ◽  
Author(s):  
Inge Dôrup ◽  
Torben Clausen

The effects of potassium deficiency on growth, K content and protein synthesis have been compared in 4–13-week-old rats. When maintained on K-deficient fodder (1 mmol/kg) rats ceased to grow within a few days, and the incorporation of [3H]leucine into skeletal muscle protein in vivo was reduced by 28–38%. Pair-feeding experiments showed that this inhibition was not due to reduced energy intake. Following 14 d on K-deficient fodder, there was a further reduction (39–56 %) in the incorporation of [3H]leucine into skeletal muscle protein, whereas the incorporation into plasma, heart and liver proteins was not affected. The accumulation of the non-metabolized amino acid α-aminoisobutyric acid in the heart and skeletal muscles was not reduced. The inhibitory effect of K deficiency on 3H-labelling of muscle protein was seen following intraperitoneal (10–240 min) as well as intravenous (10 min) injection of [3H]leucine. In addition, the incorporation of [3H]phenylalanine into skeletal muscle protein was reduced in K-depleted animals. Following acute K repletion in vivo leading to complete normalization of muscle K content, the incorporation of [3H]leucine into muscle protein showed no increase within 2 h, but reached 76 and 104% of the control level within 24 and 72 h respectively. This was associated with a rapid initial weight gain, but normal body-weight was not reached until after 7 weeks of K repletion. Following 7 d on K-deficient fodder the inhibition of growth and protein synthesis was closely correlated with the K content of the fodder (1–40 mmol/kg) and significant already at modest reductions in muscle K content. In vitro experiments with soleus muscle showed a linear relationship between the incorporation of [3H]leucine into muscle protein and K content, but the sensitivity to cellular K deficiency induced in vitro was much less pronounced than that induced in vivo. Thus, in soleus and extensor digitorum longus (EDL) muscles prepared from K-deficient rats, the incorporation of [3H]leucine was reduced by 30 and 47 % respectively. This defect was completely restored by 24 h K repletion in vivo. It is concluded that in the intact organism protein synthesis and growth are very sensitive to dietary K deficiency and that this can only partly be accounted for by the reduction in cellular K content per se. The observations emphasize the need for adequate K supplies to ensure optimum utilization of food elements for protein synthesis and growth.


1981 ◽  
Vol 97 (4) ◽  
pp. 491-495 ◽  
Author(s):  
S. Matsuzaki ◽  
M. Suzuki

Abstract. The effect of sodium perchlorate (NaClO4) on the methylthiouracil-induced increase in the activity of thyroid glucose 6-phosphate dehydrogenase (G6PDH), ornithine decarboxylase (ODC) and polyamine contents was studied in the rat. The G6PDH activity was increased nearly three-fold by methylthiouracil (MTU) but not by ClO4- at 7 days of treatment. Perchlorate lowered the MTU-induced enzyme activity to nearly the control level, without changing circulating thyrotrophin (TSH). The anion had no inhibitory effect on G6PDH activity in vitro. The possibility that an inhibitor specific for G6PDH was generated in ClO4- treated rat thyroids was excluded. The activity of ODC was greatly increased by both ClO4- and MTU, the increase being significant as early as on the second day of treatment. Perchlorate had no inhibitory effect on MTU-induced ODC activity in vivo but decreased total contents of spermidine and spermine in the thyroid, without affecting the concentration (nmoles/ g wet weight) of the polyamines. These results suggest that ClO4- acts directly on the thyroid to suppress specifically the stimulatory effect of TSH on G6PDH activity and possibly on polyamine accumulation.


1981 ◽  
Vol 48 (1) ◽  
pp. 355-366
Author(s):  
G.W. Ireland ◽  
S.E. Hawkins

During the development of Volvox tertius spheroids, a single-celled gonidium enlarges and undergoes multiple incomplete cleavages to give an embryo which is ‘inside-out’ with respect to the adult organism. A morphogenetic movement, termed ‘inversion’, turns this hollow ball of cells ‘inside-out’ through a hole, the phialopore. In V. tertius this phialopore possesses 4 inwardly directed lips. Normal inversion was studied in vitro in slide chambers and involved cell-shape changes accompanied by the production of pseudopodia and the bending backwards of the phialopore lips. 100 micrograms/ml Con A specifically and reversibly blocked inversion. Despite the inhibitory effect on cell division, the blocking of inversion was not due to the blocking of the last cell division some 50–100 min prior to inversion. Neither did the first cell-shape change from pear- to spindle-shape appear blocked. A feature of inhibition by Con A was the enhanced production of pseudopodia by embryos blocked at inversion, and the abnormal production of pseudopodia by embryos blocked at earlier stages. Non-inverting embryos showed internal flagella. We suggest that the Con A block to inversion, which may be reversed by alpha-methyl mannoside, arises from the prevention of backwards-bending of the phialopore lips. Fluorescein-isothiocyanate-Con A bound to embryo and cell coat, ane more strongly to the embryo at pre-inversion. SDS-polyacrylamide gel analysis of proteins isolated from embryos showed 4 glycoprotein bands, but Con A binding to these bands could not be demonstrated.


1999 ◽  
Vol 276 (1) ◽  
pp. G58-G63 ◽  
Author(s):  
S. E. Gabriel ◽  
S. E. Davenport ◽  
R. J. Steagall ◽  
V. Vimal ◽  
T. Carlson ◽  
...  

We have identified an agent (SP-303) that shows efficacy against in vivo cholera toxin-induced fluid secretion and in vitro cAMP-mediated Cl−secretion. Administration of cholera toxin to adult mice results in an increase in fluid accumulation (FA) in the small intestine (FA ratio = 0.63 vs. 1.86 in control vs. cholera toxin-treated animals, respectively). This elevation in FA induced by cholera toxin was significantly reduced (FA ratio = 0.70) in animals treated with a 100 mg/kg dose of SP-303 at the same time as the cholera treatment. Moreover, when SP-303 was administered 3 h after cholera toxin, a dose-dependent inhibition of FA levels was observed with a half-maximal inhibitory dose of 10 mg/kg. In Ussing chamber studies of Caco-2 or T84 monolayer preparations, SP-303 had a significant effect on both basal current and forskolin-stimulated Cl−current. SP-303 also induced an increase in resistance that paralleled the observed decrease in current. These data suggest that SP-303 has an inhibitory effect on cAMP-mediated Cl−and fluid secretion. Thus SP-303 may prove to be a useful broad-spectrum antidiarrheal agent.


2020 ◽  
Author(s):  
Charlotte M. de Winde ◽  
Samantha L. George ◽  
Abbey B. Arp ◽  
Agnesska C. Benjamin ◽  
Eva Crosas-Molist ◽  
...  

Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilise amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by the RhoA signalling pathway. Migrastatic drugs targeting actin polymerization and contractility to inhibit invasion and metastasis are therefore a promising treatment option. To predict amoeboid invasion and metastatic potential, there is a need for biomarkers functionally linked to contractility pathways. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts, and is overexpressed in several cancer types. Here, we show that podoplanin enhances amoeboid invasion in melanoma. Expression of podoplanin in murine melanoma models drives rounded cell morphology, increasing motility and invasion in vivo. Podoplanin expression is upregulated in a subset of dedifferentiated human melanoma, and in vitro is sufficient to suppress melanogenesis and upregulate melanoma-associated markers Mitf and Pou3f2. Together, our data indicates that podoplanin is both a potential biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document