Thrombin activatable fibrinolysis inhibitor (TAFI) affects fibrinolysis in a plasminogen activator concentration-dependent manner

2004 ◽  
Vol 91 (03) ◽  
pp. 473-479 ◽  
Author(s):  
Ana Guimarães ◽  
Dingeman Rijken

SummaryTAFIa was shown to attenuate fibrinolysis. In our in vitro study, we investigated how the inhibitory effect of TAFIa depended on the type and concentration of the plasminogen activator (PA). We measured PA-mediated lysis times of plasma clots under conditions of maximal TAFI activation by thrombin-thrombomodulin in the absence and presence of potato carboxypeptidase inhibitor. Seven different PAs were compared comprising both tPA-related (tPA, TNK-tPA, DSPA), bacterial PA-related (staphylokinase and APSAC) and urokinase-related (tcu-PA and k2tu-PA) PAs. The lysis times and the retardation factor were plotted against the PA concentration. The retardation factor plots were bell-shaped. At low PA concentrations, the retardation factor was low, probably due to the limited stability of TAFIa. At intermediate PA concentrations the retardation factor was maximal (3-6 depending on the PA), with TNK-tPA, APSAC and DSPA exhibiting the strongest effect. At high PA concentrations, the retardation factor was again low, possibly due to inactivation of TAFIa by plasmin or to a complete conversion of glu-plasminogen into lys-plasminogen. Using individual plasmas with a reduced plasmin inhibitor activity (plasmin inhibitor Enschede) the bell-shaped curve of the retardation factor shifted towards lower tPA and DSPA concentrations, but the height did not decrease. In conclusion, TAFIa delays the lysis of plasma clots mediated by all the plasminogen activators tested. This delay is dependent on the type and concentration of the plasminogen activator, but not on the fibrin specificity of the plasminogen activator. Furthermore, plasmin inhibitor does not play a significant role in the inhibition of plasma clot lysis by TAFI.

Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2692-2697
Author(s):  
Y Sakata ◽  
Y Eguchi ◽  
J Mimuro ◽  
M Matsuda ◽  
Y Sumi

A monoclonal antibody (MoAb) to alpha 2-plasmin inhibitor designated JTPI-1 inhibited antiplasmin activity by interfering with formation of alpha 2-plasmin inhibitor (alpha 2-PI)-plasmin complex. With this MoAb, we observed plasma clot lysis in vitro and evaluated the potential of JTPI-1 to serve as a new therapeutic agent for thrombolysis. After adding 125I-labeled fibrinogen to plasma, clots were made by adding thrombin and calcium and were then resuspended in normal plasma containing various concentrations of JTPI-1. The presence of JTPI-1 enhanced release of the soluble 125I-labeled fibrin degradation fragment from the clots in a dose-dependent manner. With tissue plasminogen activator (t-PA)-depleted plasma, we showed that induction of clot lysis by JTPI-1 was dependent on fibrin-bound endogenous t-PA. Regulation of fibrinolysis initiated on the fibrin surface by fibrin- bound t-PA and plasminogen is mediated by alpha 2-PI cross-linked to fibrin by activated factor XIII. JTPI-1 bound to this cross-linked alpha 2-PI neutralized its activity and induced partial digestion of fibrin by plasmin. This resulted in additional binding of Glu- plasminogen to fibrin during the incubation. When 1.2 mumol/L JTPI-1 and 5 U/mL exogenous t-PA were present in the suspending plasma, the rate of clot lysis was essentially the same as that induced by 60 U/mL exogenous t-PA alone. These results suggest that JTPI-1 may be useful in reducing the amount of t-PA administered for thrombolytic therapy.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2692-2697 ◽  
Author(s):  
Y Sakata ◽  
Y Eguchi ◽  
J Mimuro ◽  
M Matsuda ◽  
Y Sumi

Abstract A monoclonal antibody (MoAb) to alpha 2-plasmin inhibitor designated JTPI-1 inhibited antiplasmin activity by interfering with formation of alpha 2-plasmin inhibitor (alpha 2-PI)-plasmin complex. With this MoAb, we observed plasma clot lysis in vitro and evaluated the potential of JTPI-1 to serve as a new therapeutic agent for thrombolysis. After adding 125I-labeled fibrinogen to plasma, clots were made by adding thrombin and calcium and were then resuspended in normal plasma containing various concentrations of JTPI-1. The presence of JTPI-1 enhanced release of the soluble 125I-labeled fibrin degradation fragment from the clots in a dose-dependent manner. With tissue plasminogen activator (t-PA)-depleted plasma, we showed that induction of clot lysis by JTPI-1 was dependent on fibrin-bound endogenous t-PA. Regulation of fibrinolysis initiated on the fibrin surface by fibrin- bound t-PA and plasminogen is mediated by alpha 2-PI cross-linked to fibrin by activated factor XIII. JTPI-1 bound to this cross-linked alpha 2-PI neutralized its activity and induced partial digestion of fibrin by plasmin. This resulted in additional binding of Glu- plasminogen to fibrin during the incubation. When 1.2 mumol/L JTPI-1 and 5 U/mL exogenous t-PA were present in the suspending plasma, the rate of clot lysis was essentially the same as that induced by 60 U/mL exogenous t-PA alone. These results suggest that JTPI-1 may be useful in reducing the amount of t-PA administered for thrombolytic therapy.


Reproduction ◽  
2001 ◽  
pp. 131-137 ◽  
Author(s):  
IA Taitzoglou ◽  
M Tsantarliotou ◽  
I Zervos ◽  
D Kouretas ◽  
NA Kokolis

The effect of tannic acid, a common flavonoid, on the acrosin and plasminogen activator activity and plasmin activity of human and ram spermatozoa was evaluated. Acrosin and plasminogen activator activity were determined by spectrophotometry using the chromogenic substrates N-alpha-benzoyl-DL-arginine para-nitroanilide-HCl (BAPNA) and H-D-valyl-L-leucyl-L-lysine-p-nitroanilide-2HCl (S-2251), respectively. In extracts from both human and ovine acrosomes, the activities of acrosin and plasminogen activators were susceptible to tannic acid inhibition. The inhibitory effect of tannic acid was observed at concentrations > 50 micromol l(-1) in a dose-dependent manner. In additional experiments, low concentrations of tannic acid significantly inhibited tissue-type plasminogen activator, urokinase-type plasminogen activator and plasmin activity in a concentration-dependent manner over the range 0.25-200 micromol l(-1). Tannic acid reduced the motility of ram spermatozoa at a concentration of 1000 micromol l(-1) after 2 and 3 h co-incubation with spermatozoa. The motility of human spermatozoa remained unchanged over the range 0.1-1000 micromol tannic acid l(-1) during 3 h co-incubation. These results indicate that tannic acid inhibited the activity of both acrosin and plasminogen activator and indicates a possible mechanism by which flavonoids exert their antifertility effects.


1979 ◽  
Author(s):  
L Miles ◽  
J Burnier ◽  
M Verlander ◽  
M Goodman ◽  
A Kleiss ◽  
...  

Flu-HPA is one of a series of flufenamic acid derivations that enhances plasminogen-dependent clot lysis in vitro. Studies of possible mechanisms of action of Flu-HPA were undertaken. The influence of Flu-HPA on the inhibition of purified plasmin by purified PI was studied. PI activity was assessed by its inhibition of the clevage of the tripeptide S-2251 (H-D-Val-Leu-Lys-pNA) by plasmin. Flu-HPA was dissolved in DMF or in methonol and preincubated with PI before addition of plasmin. At Flu-HPA concentrations greater than 1mM and up to 60mM, the inhibitory activity of PI was totally lost. The inhibitory effect of normal human plasma on plasmin was also completely abolished at concentrations of Flu-HPA between 2.5 and 40mM. The effect of Flu-HPA on the inhibition of purified plasma kallikrein by purified CI-Inh was also studied. CI-Inh activity was measured by its inhibition of cleavage of the tripeptide Bz-Pro-Phe-Arg-pNA by kallikrein. When Flu-HPA, dissolved in DMF or in methonol, was preincubated with CI-Inh, a concentration dependent inhibition of CI-Inh activity was observed. CI-Inh activity was abolished by concentrations of Flu-HPA greater than 1mM. Flu-HPA also inhibited the activity of CI-Inh on purified Factor XIIa. These observations suggest that this flufenamic acid derivative may enhance fibrinolysis not only by inhibiting PI activity but also by decreasing the inactivation of plasminogen activators by CI-Inh.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 397
Author(s):  
Yoo-Kyung Song ◽  
Jin-Ha Yoon ◽  
Jong Kyu Woo ◽  
Ju-Hee Kang ◽  
Kyeong-Ryoon Lee ◽  
...  

The potential inhibitory effect of quercetin, a major plant flavonol, on breast cancer resistance protein (BCRP) activity was investigated in this study. The presence of quercetin significantly increased the cellular accumulation and associated cytotoxicity of the BCRP substrate mitoxantrone in human cervical cancer cells (HeLa cells) in a concentration-dependent manner. The transcellular efflux of prazosin, a stereotypical BCRP substrate, was also significantly reduced in the presence of quercetin in a bidirectional transport assay using human BCRP-overexpressing cells; further kinetic analysis revealed IC50 and Ki values of 4.22 and 3.91 μM, respectively. Moreover, pretreatment with 10 mg/kg quercetin in rats led to a 1.8-fold and 1.5-fold increase in the AUC8h (i.e., 44.5 ± 11.8 min∙μg/mL vs. 25.7 ± 9.98 min∙μg/mL, p < 0.05) and Cmax (i.e., 179 ± 23.0 ng/mL vs. 122 ± 23.2 ng/mL, p < 0.05) of orally administered sulfasalazine, respectively. Collectively, these results provide evidence that quercetin acts as an in vivo as well as in vitro inhibitor of BCRP. Considering the high dietary intake of quercetin as well as its consumption as a dietary supplement, issuing a caution regarding its food–drug interactions should be considered.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 166
Author(s):  
Sabrina Radakovic ◽  
Nicola Andreoli ◽  
Simon Schmid ◽  
Sandor Nietzsche ◽  
Jürg Zumbrunn ◽  
...  

The aims of the present study were: (a) to determine the mechanism of action of taurolidine against bacterial species associated with periodontal disease, and (b) to evaluate the potential development of resistance against taurolidine as compared with minocycline. After visualizing the mode of action of taurolidine by transmission electron micrographs, the interaction with most important virulence factors (lipopolysaccharide (LPS), Porphyromonas gingivalis gingipains, Aggregatibacter actinomycetemcomitans leukotoxin), was analyzed. Then, 14 clinical isolates from subgingival biofilm samples were transferred on agar plates containing subinhibitory concentrations of taurolidine or minocycline up to 50 passages. Before and after each 10 passages, minimal inhibitory concentrations (MICs) were determined. Increasing MICs were screened for efflux mechanism. Taurolidine inhibited in a concentration-dependent manner the activities of LPS and of the arginine-specific gingipains; however, an effect on A. actinomycetemcomitans leukotoxin was not detected. One P. gingivalis strain developed a resistance against taurolidine, which was probably linked with efflux mechanisms. An increase of MIC values of minocycline occurred in five of the 14 included strains after exposure to subinhibitory concentrations of the antibiotic. The present results indicate that: (a) taurolidine interacts with LPS and gingipains, and (b) development of resistance seems to be a rare event when using taurolidine.


1990 ◽  
Vol 259 (4) ◽  
pp. F539-F544 ◽  
Author(s):  
C. S. Park ◽  
P. S. Doh ◽  
R. E. Carraway ◽  
G. G. Chung ◽  
J. C. Fray ◽  
...  

This study investigated the cellular mechanism of stimulation of renin secretion by the loop diuretic ethacrynic acid (EA) in rabbit renal cortical slices. The diuretic rapidly stimulated renin secretion reversibly and in a concentration-dependent manner. The stimulation was independent of the presence of Na+, Cl-, Ca2+, or other loop diuretics (furosemide and bumetanide) in the incubation media, suggesting that the stimulation in vitro was not dependent on the inhibitory effect of the diuretic on Na(+)-K(+)-2Cl-cotransport. The findings do not support the macula densa hypothesis. The stimulation by the diuretic was prevented and reversed by thiols such as cysteine and dithiothreitol, which also prevented and reversed the stimulation of renin secretion by the nondiuretic sulfhydryl reagent P-chloromercuriphenyl-sulfonate (PCMPS). These results suggest that EA stimulates renin secretion in vitro via reversible chemical reactions with specific membrane sulfhydryl groups that may have no functional role in the Na(+)-K(+)-2Cl- cotransport.


Sign in / Sign up

Export Citation Format

Share Document