scholarly journals Saccharomyces cerevisiae centromere CEN11 does not induce chromosome instability when integrated into the Aspergillus nidulans genome.

1986 ◽  
Vol 6 (11) ◽  
pp. 3621-3625 ◽  
Author(s):  
M T Boylan ◽  
M J Holland ◽  
W E Timberlake

We constructed Aspergillus nidulans transformation plasmids containing the A. nidulans argB+ gene and either containing or lacking centromeric DNA from Saccharomyces cerevisiae chromosome XI (CEN11). The plasmids transformed an argB Aspergillus strain to arginine independence at indistinguishable frequencies. Stable haploid transformants were obtained with both plasmids, and strains were identified in which the plasmids had integrated into chromosome III by homologous recombination at the argB locus. Plasmid DNA was recovered from a transformant containing CEN11, and the sequence of the essential portion of CEN11 was determined to be unaltered. The transformants were further characterized by using them to construct heterozygous diploids and then testing the diploids for preferential loss of the plasmid-containing chromosomes. The CEN11 sequence had little or no effect on chromosome stability. Thus, CEN11 does not prevent chromosomal integration of plasmid DNA and probably lacks centromere activity in Aspergillus spp.

1986 ◽  
Vol 6 (11) ◽  
pp. 3621-3625
Author(s):  
M T Boylan ◽  
M J Holland ◽  
W E Timberlake

We constructed Aspergillus nidulans transformation plasmids containing the A. nidulans argB+ gene and either containing or lacking centromeric DNA from Saccharomyces cerevisiae chromosome XI (CEN11). The plasmids transformed an argB Aspergillus strain to arginine independence at indistinguishable frequencies. Stable haploid transformants were obtained with both plasmids, and strains were identified in which the plasmids had integrated into chromosome III by homologous recombination at the argB locus. Plasmid DNA was recovered from a transformant containing CEN11, and the sequence of the essential portion of CEN11 was determined to be unaltered. The transformants were further characterized by using them to construct heterozygous diploids and then testing the diploids for preferential loss of the plasmid-containing chromosomes. The CEN11 sequence had little or no effect on chromosome stability. Thus, CEN11 does not prevent chromosomal integration of plasmid DNA and probably lacks centromere activity in Aspergillus spp.


1991 ◽  
Vol 11 (6) ◽  
pp. 2919-2928
Author(s):  
K W Runge ◽  
R J Wellinger ◽  
V A Zakian

The linear chromosomes of eukaryotes contain specialized structures to ensure their faithful replication and segregation to daughter cells. Two of these structures, centromeres and telomeres, are limited, respectively, to one and two copies per chromosome. It is possible that the proteins that interact with centromere and telomere DNA sequences are present in limiting amounts and could be competed away from the chromosomal copies of these elements by additional copies introduced on plasmids. We have introduced excess centromeres and telomeres into Saccharomyces cerevisiae and quantitated their effects on the rates of loss of chromosome III and chromosome VII by fluctuation analysis. We show that (i) 600 new telomeres have no effect on chromosome loss; (ii) an average of 25 extra centromere DNA sequences increase the rate of chromosome III loss from 0.4 x 10(-4) events per cell division to 1.3 x 10(-3) events per cell division; (iii) centromere DNA (CEN) sequences on circular vectors destabilize chromosomes more effectively than do CEN sequences on 15-kb linear vectors, and transcribed CEN sequences have no effect on chromosome stability. We discuss the different effects of extra centromere and telomere DNA sequences on chromosome stability in terms of how the cell recognizes these two chromosomal structures.


1990 ◽  
Vol 10 (1) ◽  
pp. 223-234
Author(s):  
M A Hoyt ◽  
T Stearns ◽  
D Botstein

By using a multiply marked supernumerary chromosome III as an indicator, we isolated mutants of Saccharomyces cerevisiae that display increased rates of chromosome loss. In addition to mutations in the tubulin-encoding TUB genes, we found mutations in the CIN1, CIN2, and CIN4 genes. These genes have been defined independently by mutations causing benomyl supersensitivity and are distinct from other known yeast genes that affect chromosome segregation. Detailed phenotypic characterization of cin mutants revealed several other phenotypes similar to those of tub mutants. Null alleles of these genes caused cold sensitivity for viability. At 11 degrees C, cin mutants arrest at the mitosis stage of their cell cycle because of loss of most microtubule structure. cin1, cin2, and cin4 mutations also cause defects in two other microtubule-mediated processes, nuclear migration and nuclear fusion (karyogamy). Overproduction of the CIN1 gene product was found to cause the same phenotype as loss of function, supersensitivity to benomyl. Our findings suggest that the CIN1, CIN2, and CIN4 proteins contribute to microtubule stability either by regulating the activity of a yeast microtubule component or as structural components of microtubules.


1991 ◽  
Vol 11 (6) ◽  
pp. 2919-2928 ◽  
Author(s):  
K W Runge ◽  
R J Wellinger ◽  
V A Zakian

The linear chromosomes of eukaryotes contain specialized structures to ensure their faithful replication and segregation to daughter cells. Two of these structures, centromeres and telomeres, are limited, respectively, to one and two copies per chromosome. It is possible that the proteins that interact with centromere and telomere DNA sequences are present in limiting amounts and could be competed away from the chromosomal copies of these elements by additional copies introduced on plasmids. We have introduced excess centromeres and telomeres into Saccharomyces cerevisiae and quantitated their effects on the rates of loss of chromosome III and chromosome VII by fluctuation analysis. We show that (i) 600 new telomeres have no effect on chromosome loss; (ii) an average of 25 extra centromere DNA sequences increase the rate of chromosome III loss from 0.4 x 10(-4) events per cell division to 1.3 x 10(-3) events per cell division; (iii) centromere DNA (CEN) sequences on circular vectors destabilize chromosomes more effectively than do CEN sequences on 15-kb linear vectors, and transcribed CEN sequences have no effect on chromosome stability. We discuss the different effects of extra centromere and telomere DNA sequences on chromosome stability in terms of how the cell recognizes these two chromosomal structures.


1990 ◽  
Vol 10 (1) ◽  
pp. 223-234 ◽  
Author(s):  
M A Hoyt ◽  
T Stearns ◽  
D Botstein

By using a multiply marked supernumerary chromosome III as an indicator, we isolated mutants of Saccharomyces cerevisiae that display increased rates of chromosome loss. In addition to mutations in the tubulin-encoding TUB genes, we found mutations in the CIN1, CIN2, and CIN4 genes. These genes have been defined independently by mutations causing benomyl supersensitivity and are distinct from other known yeast genes that affect chromosome segregation. Detailed phenotypic characterization of cin mutants revealed several other phenotypes similar to those of tub mutants. Null alleles of these genes caused cold sensitivity for viability. At 11 degrees C, cin mutants arrest at the mitosis stage of their cell cycle because of loss of most microtubule structure. cin1, cin2, and cin4 mutations also cause defects in two other microtubule-mediated processes, nuclear migration and nuclear fusion (karyogamy). Overproduction of the CIN1 gene product was found to cause the same phenotype as loss of function, supersensitivity to benomyl. Our findings suggest that the CIN1, CIN2, and CIN4 proteins contribute to microtubule stability either by regulating the activity of a yeast microtubule component or as structural components of microtubules.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


Author(s):  
Thomas R. Reich ◽  
Christian Schwarzenbach ◽  
Juliana Brandstetter Vilar ◽  
Sven Unger ◽  
Fabian Mühlhäusler ◽  
...  

AbstractTo clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


1990 ◽  
Vol 18 (1) ◽  
pp. 1-5 ◽  
Author(s):  
V. M. Glaser ◽  
A. V. Glasunov ◽  
G. G. Tevzadze ◽  
J. R. Perera ◽  
S. V. Shestakov

Sign in / Sign up

Export Citation Format

Share Document