scholarly journals Lymphoid and mesenchymal tumors in transgenic mice expressing the v-fps protein-tyrosine kinase.

1989 ◽  
Vol 9 (12) ◽  
pp. 5491-5499 ◽  
Author(s):  
S P Yee ◽  
D Mock ◽  
P Greer ◽  
V Maltby ◽  
J Rossant ◽  
...  

src, abl, and fps/fes are prototypes for a family of genes encoding nonreceptor protein-tyrosine kinases. The oncogenic potential of the v-fps protein-tyrosine kinase was investigated by introduction of the gag-fps coding sequence of Fujinami sarcoma virus into the mouse germ line. Transgenic mice with v-fps under the transcriptional control of a 5' human beta-globin promoter (GF) or with both 5' and 3' beta-globin regulatory sequences (GEF) were viable. Unexpectedly, both GF and GEF transgenes were expressed in a wide variety of tissues and induced a spectrum of benign and malignant tumors. These tumors, which included lymphomas, thymomas, fibrosarcomas, angiosarcomas, hemangiomas, and neurofibrosarcomas, developed with various frequencies after latent periods of 2 to 12 months. The majority of lymphoid neoplasms appeared to be of T-cell origin and were monoclonal, as judged by rearrangements of the T-cell receptor beta or immunoglobulin genes. Some tissues that expressed the v-fps oncogene, such as heart, brain, lung, and testes, developed no malignant tumors. The v-fps protein-tyrosine kinase therefore has a broad but not unrestricted range of oncogenic activity in cells of lymphoid and mesenchymal origin. The incomplete penetrance of the neoplastic phenotype and the monoclonality of lymphoid tumors suggest that tumor formation in v-fps mice requires genetic or epigenetic events in addition to expression of the P130gag-fps protein-tyrosine kinase.


1989 ◽  
Vol 9 (12) ◽  
pp. 5491-5499
Author(s):  
S P Yee ◽  
D Mock ◽  
P Greer ◽  
V Maltby ◽  
J Rossant ◽  
...  

src, abl, and fps/fes are prototypes for a family of genes encoding nonreceptor protein-tyrosine kinases. The oncogenic potential of the v-fps protein-tyrosine kinase was investigated by introduction of the gag-fps coding sequence of Fujinami sarcoma virus into the mouse germ line. Transgenic mice with v-fps under the transcriptional control of a 5' human beta-globin promoter (GF) or with both 5' and 3' beta-globin regulatory sequences (GEF) were viable. Unexpectedly, both GF and GEF transgenes were expressed in a wide variety of tissues and induced a spectrum of benign and malignant tumors. These tumors, which included lymphomas, thymomas, fibrosarcomas, angiosarcomas, hemangiomas, and neurofibrosarcomas, developed with various frequencies after latent periods of 2 to 12 months. The majority of lymphoid neoplasms appeared to be of T-cell origin and were monoclonal, as judged by rearrangements of the T-cell receptor beta or immunoglobulin genes. Some tissues that expressed the v-fps oncogene, such as heart, brain, lung, and testes, developed no malignant tumors. The v-fps protein-tyrosine kinase therefore has a broad but not unrestricted range of oncogenic activity in cells of lymphoid and mesenchymal origin. The incomplete penetrance of the neoplastic phenotype and the monoclonality of lymphoid tumors suggest that tumor formation in v-fps mice requires genetic or epigenetic events in addition to expression of the P130gag-fps protein-tyrosine kinase.



2010 ◽  
Vol 106 (4) ◽  
pp. 769-778 ◽  
Author(s):  
Sergey Pryshchep ◽  
Jörg J. Goronzy ◽  
Susmita Parashar ◽  
Cornelia M. Weyand


Nature ◽  
2007 ◽  
Vol 446 (7137) ◽  
pp. 824-824
Author(s):  
Marcos H. Hatada ◽  
Xiaode Lu ◽  
Ellen R. Laird ◽  
Jeremy Green ◽  
Jay P. Morgenstern ◽  
...  


Cell ◽  
1991 ◽  
Vol 65 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Michael P. Cooke ◽  
Kristin M. Abraham ◽  
Katherine A. Forbush ◽  
Roger M. Perimutter


1994 ◽  
Vol 14 (5) ◽  
pp. 2862-2870 ◽  
Author(s):  
M Raab ◽  
M Yamamoto ◽  
C E Rudd

CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.



1998 ◽  
Vol 143 (3) ◽  
pp. 613-624 ◽  
Author(s):  
Joanne Sloan-Lancaster ◽  
John Presley ◽  
Jan Ellenberg ◽  
Tetsuo Yamazaki ◽  
Jennifer Lippincott-Schwartz ◽  
...  

The nonreceptor protein tyrosine kinase ZAP-70 is a critical enzyme required for successful T lymphocyte activation. After antigenic stimulation, ZAP-70 rapidly associates with T cell receptor (TCR) subunits. The kinetics of its translocation to the cell surface, the properties of its specific interaction with the TCRζ chain expressed as a chimeric protein (TTζ and Tζζ), and its mobility in different intracellular compartments were studied in individual live HeLa cells, using ZAP-70 and Tζζ fused to green fluorescent protein (ZAP-70 GFP and Tζζ–GFP, respectively). Time-lapse imaging using confocal microscopy indicated that the activation-induced redistribution of ZAP-70 to the plasma membrane, after a delayed onset, is of long duration. The presence of the TCRζ chain is critical for the redistribution, which is enhanced when an active form of the protein tyrosine kinase Lck is coexpressed. Binding specificity to TTζ was indicated using mutant ZAP-70 GFPs and a truncated ζ chimera. Photobleaching techniques revealed that ZAP-70 GFP has decreased mobility at the plasma membrane, in contrast to its rapid mobility in the cytosol and nucleus. Tζζ– GFP is relatively immobile, while peripherally located ZAP-70 in stimulated cells is less mobile than cytosolic ZAP-70 in unstimulated cells, a phenotype confirmed by determining the respective diffusion constants. Examination of the specific molecular association of signaling proteins using these approaches has provided new insights into the TCRζ–ZAP-70 interaction and will be a powerful tool for continuing studies of lymphocyte activation.





Nature ◽  
1995 ◽  
Vol 377 (6544) ◽  
pp. 32-38 ◽  
Author(s):  
Marcos H. Hatada ◽  
Xiaode Lu ◽  
Ellen R. Laird ◽  
Jeremy Green ◽  
Jay P. Morgenstern ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document