scholarly journals Heat shock and developmental regulation of the Drosophila melanogaster hsp83 gene.

1989 ◽  
Vol 9 (4) ◽  
pp. 1746-1753 ◽  
Author(s):  
H Xiao ◽  
J T Lis

In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.

1989 ◽  
Vol 9 (4) ◽  
pp. 1746-1753
Author(s):  
H Xiao ◽  
J T Lis

In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.


1990 ◽  
Vol 10 (6) ◽  
pp. 3232-3238 ◽  
Author(s):  
L A Perkins ◽  
J S Doctor ◽  
K Zhang ◽  
L Stinson ◽  
N Perrimon ◽  
...  

The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.


1990 ◽  
Vol 10 (6) ◽  
pp. 3272-3276
Author(s):  
H Xiao ◽  
J T Lis

Three short synthetic DNA sequences, which are closely related to one another, confer three distinct patterns of developmental expression on the heat shock hsp70 gene in transgenic Drosophila melanogaster lines. These results show that small variations or even single base pair changes in a repeated element of a regulatory sequence can create promoters that display new specificities of tissue and developmental regulation. Interestingly, the three patterns of developmental expression conferred by the synthetic DNAs resemble in part those of the known developmental genes: glucose dehydrogenase (Gld), Dopa decarboxylase (Ddc), and salivary gland secretory proteins (Sgs), respectively. In each case, the defined regulatory region of the known developmental gene contains multiple sequences that are similar or identical to the synthetic sequence that confers a similar pattern of developmental expression on the hsp70 gene. Thus, these results are congruent with the view that short sequence elements in multiple copies can confer either simple or relatively complex patterns of developmental expression on a receptive promoter like that of hsp70. Furthermore, the fact that the three variants tested produced three distinct patterns of expression in transgenic animals suggests that the number of different elements is large.


1986 ◽  
Vol 6 (11) ◽  
pp. 3984-3989 ◽  
Author(s):  
D S Gilmour ◽  
J T Lis

By using a protein-DNA cross-linking method (D. S. Gilmour and J. T. Lis, Mol. Cell. Biol. 5:2009-2018, 1985), we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.


1990 ◽  
Vol 10 (6) ◽  
pp. 3272-3276 ◽  
Author(s):  
H Xiao ◽  
J T Lis

Three short synthetic DNA sequences, which are closely related to one another, confer three distinct patterns of developmental expression on the heat shock hsp70 gene in transgenic Drosophila melanogaster lines. These results show that small variations or even single base pair changes in a repeated element of a regulatory sequence can create promoters that display new specificities of tissue and developmental regulation. Interestingly, the three patterns of developmental expression conferred by the synthetic DNAs resemble in part those of the known developmental genes: glucose dehydrogenase (Gld), Dopa decarboxylase (Ddc), and salivary gland secretory proteins (Sgs), respectively. In each case, the defined regulatory region of the known developmental gene contains multiple sequences that are similar or identical to the synthetic sequence that confers a similar pattern of developmental expression on the hsp70 gene. Thus, these results are congruent with the view that short sequence elements in multiple copies can confer either simple or relatively complex patterns of developmental expression on a receptive promoter like that of hsp70. Furthermore, the fact that the three variants tested produced three distinct patterns of expression in transgenic animals suggests that the number of different elements is large.


1990 ◽  
Vol 10 (6) ◽  
pp. 3232-3238
Author(s):  
L A Perkins ◽  
J S Doctor ◽  
K Zhang ◽  
L Stinson ◽  
N Perrimon ◽  
...  

The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.


1986 ◽  
Vol 6 (11) ◽  
pp. 3984-3989
Author(s):  
D S Gilmour ◽  
J T Lis

By using a protein-DNA cross-linking method (D. S. Gilmour and J. T. Lis, Mol. Cell. Biol. 5:2009-2018, 1985), we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2001 ◽  
Vol 78 (1) ◽  
pp. 13-21 ◽  
Author(s):  
H. GRANOK ◽  
B. A. LEIBOVITCH ◽  
S. C. R. ELGIN

GAGA factor is an important chromosomal protein involved in establishing specific nucleosome arrays and in regulating gene transcription in Drosophila melanogaster. We developed a transgenic system for controlled heat-shock-dependent overexpression of the GAGA factor 519 amino acid isoform (GAGA-519) in vivo. Efficient production of stable protein from these transgenes provided genetic rescue of a hypomorphic Trithorax-like (Trl) lethal allele to adulthood. Nevertheless, supplemental GAGA-519 did not suppress position effect variegation (PEV), a phenomenon commonly used to measure dosage effects of chromosomal proteins, nor did it rescue other lethal alleles of Trl. The results suggest requirements for the additional isoforms of GAGA factor, or for more precise regulation of synthesis, to carry out the diverse functions of this protein.


Sign in / Sign up

Export Citation Format

Share Document