scholarly journals Linkage Map of Escherichia coli K-12, Edition 10: The Physical Map

1998 ◽  
Vol 62 (3) ◽  
pp. 985-1019 ◽  
Author(s):  
Kenneth E. Rudd

SUMMARY A physical map, EcoMap10, of the now completely sequenced Escherichia coli chromosome is presented. Calculated genomic positions for the eight restriction enzymes BamHI, HindIII, EcoRI, EcoRV, BglI, KpnI, PstI, and PvuII are depicted. Both sequenced and unsequenced Kohara/Isono miniset clones are aligned to this calculated restriction map. DNA sequence searches identify the precise locations of insertion sequence elements and repetitive extragenic palindrome clusters. EcoGene10, a revised set of genes and functionally uncharacterized open reading frames (ORFs), is also depicted on EcoMap10. The complete set of unnamed ORFs in EcoGene10 are assigned provisional names beginning with the letter “y” by using a systematic nomenclature.

2012 ◽  
Vol 56 (5) ◽  
pp. 2767-2769 ◽  
Author(s):  
Alejandro Couce ◽  
Alejandra Briales ◽  
Alexandro Rodríguez-Rojas ◽  
Coloma Costas ◽  
Álvaro Pascual ◽  
...  

ABSTRACTTo determine whether the overexpression of chromosomal genes can confer fosfomycin resistance, genomewide screening of a complete set of 5,272 plasmid-expressed open reading frames ofEscherichia coli(ASKA collection) was performed. Major results are that (i) no clinical level of resistance is achieved by overexpressing chromosomal genes, exceptmurA; (ii) this level is reached at a low fitness cost; and (iii) this cost is much lower than that imposed by other mutations conferring fosfomycin resistance.


2005 ◽  
Vol 187 (3) ◽  
pp. 1074-1090 ◽  
Author(s):  
Prasad Gyaneshwar ◽  
Oleg Paliy ◽  
Jon McAuliffe ◽  
David L. Popham ◽  
Michael I. Jordan ◽  
...  

ABSTRACT We determined global transcriptional responses of Escherichia coli K-12 to sulfur (S)- or nitrogen (N)-limited growth in adapted batch cultures and cultures subjected to nutrient shifts. Using two limitations helped to distinguish between nutrient-specific changes in mRNA levels and common changes related to the growth rate. Both homeostatic and slow growth responses were amplified upon shifts. This made detection of these responses more reliable and increased the number of genes that were differentially expressed. We analyzed microarray data in several ways: by determining expression changes after use of a statistical normalization algorithm, by hierarchical and k-means clustering, and by visual inspection of aligned genome images. Using these tools, we confirmed known homeostatic responses to global S limitation, which are controlled by the activators CysB and Cbl, and found that S limitation propagated into methionine metabolism, synthesis of FeS clusters, and oxidative stress. In addition, we identified several open reading frames likely to respond specifically to S availability. As predicted from the fact that the ddp operon is activated by NtrC, synthesis of cross-links between diaminopimelate residues in the murein layer was increased under N-limiting conditions, as was the proportion of tripeptides. Both of these effects may allow increased scavenging of N from the dipeptide d-alanine-d-alanine, the substrate of the Ddp system.


2003 ◽  
Vol 185 (6) ◽  
pp. 1976-1986 ◽  
Author(s):  
Gabor L. Igloi ◽  
Roderich Brandsch

ABSTRACT The 165-kb catabolic plasmid pAO1 enables the gram-positive soil bacterium Arthrobacter nicotinovorans to grow on the tobacco alkaloid l-nicotine. The 165,137-nucleotide sequence, with an overall G+C content of 59.7%, revealed, besides genes and open reading frames (ORFs) for nicotine degradation, a complete set of ORFs for enzymes essential for the biosynthesis of the molybdenum dinucleotide cofactor, as well as ORFs related to uptake and utilization of carbohydrates, sarcosine, and amino acids. Of the 165 ORFs, approximately 50% were related to metabolic functions. pAO1 conferred to A. nicotinovorans the ability to take up l-[14C]nicotine from the medium, with an Km of 5.6 ± 2.2 μM. ORFs of putative nicotine transporters formed a cluster with the gene of the d-nicotine-specific 6-hydroxy-d-nicotine oxidase. ORFs related to replication, chromosome partitioning, and natural transformation functions (dprA) were identified on pAO1. Few ORFs showed similarity to known conjugation-promoting proteins, but pAO1 could be transferred by conjugation to a pAO1-negative strain at a rate of 10−2 to 10−3 per donor. ORFs with no known function represented approximately 35% of the pAO1 sequence. The positions of insertion sequence elements and composite transposons, corroborated by the G+C content of the pAO1 sequence, suggest a modular composition of the plasmid.


2001 ◽  
Vol 183 (13) ◽  
pp. 3958-3966 ◽  
Author(s):  
David Šmajs ◽  
George M. Weinstock

ABSTRACT A cosmid library of DNA from colicin Js-sensitive enteroinvasiveEscherichia coli (EIEC) strain O164 was made in colicin Js-resistant strain E. coli VCS257, and colicin Js-sensitive clones were identified. Sensitivity to colicin Js was associated with the carriage of a three-gene operon upstream of and partially overlapping senB. The open reading frames were designated cjrABC (for colicin Js receptor), coding for proteins of 291, 258, and 753 amino acids, respectively. Tn7 insertions in any of them led to complete resistance to colicin Js. A near-consensus Fur box was found upstream ofcjrA, suggesting regulation of the cjroperon by iron levels. CjrA protein was homologous to iron-regulatedPseudomonas aeruginosa protein PhuW, whose function is unknown; CjrB was homologous to the TonB protein fromPseudomonas putida; and CjrC was homologous to a putative outer membrane siderophore receptor from Campylobacter jejuni. Cloning experiments showed that the cjrBand cjrC genes are sufficient for colicin Js sensitivity. Uptake of colicin Js into sensitive bacteria was dependent on the ExbB protein but not on the E. coli K-12 TonB and TolA, -B, and -Q proteins. Sensitivity to colicin Js is positively regulated by temperature via the VirB protein and negatively controlled by the iron source through the Fur protein. Among EIEC strains, two types of colicin Js-sensitive phenotypes were identified that differed in sensitivity to colicin Js by 1 order of magnitude. The difference in sensitivity to colicin Js is not due to differences between the sequences of the CjrB and CjrC proteins.


mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Kaneyoshi Yamamoto ◽  
Yuki Yamanaka ◽  
Tomohiro Shimada ◽  
Paramita Sarkar ◽  
Myu Yoshida ◽  
...  

The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β′, of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.


2005 ◽  
Vol 73 (8) ◽  
pp. 4753-4765 ◽  
Author(s):  
Isabel C. A. Scaletsky ◽  
Jane Michalski ◽  
Alfredo G. Torres ◽  
Michelle V. Dulguer ◽  
James B. Kaper

ABSTRACT The O26 serogroup of enteropathogenic Escherichia coli (EPEC) is one of the serogroups most frequently implicated in infant diarrhea and is also common among enterohemorrhagic E. coli (EHEC) strains. The most common O26 strains belong to EPEC/EHEC serotype O26:H11 and are generally Shiga toxin (Stx) positive. Stx-negative E. coli strains that are negative for the EPEC EAF plasmid and bundle-forming pilus (Bfp) are classified as atypical EPEC. Here, we report a novel adhesin present in an stx-negative bfpA-negative atypical EPEC O26:H11 strain isolated from an infant with diarrhea. A cloned 15-kb genomic region from this strain, designated the locus for diffuse adherence (lda), confers diffuse adherence on HEp-2 cells when expressed in E. coli K-12. Sequence analysis of lda revealed a G+C content of 46.8% and 15 open reading frames sharing homology with the E. coli K88 fae and CS31A clp fimbrial operons. The lda region is part of a putative 26-kb genomic island inserted into the proP gene of the E. coli chromosome. Hybridization studies have demonstrated the prevalence of the minor structural subunit gene, ldaH, across E. coli serogroups O5, O26, O111, and O145. A second plasmid-encoded factor that contributed to the Hep-2 adherence of this strain was also identified but was not characterized. Null mutations that abolish adherence to HEp-2 cells can be restored by plasmid complementation. Antiserum raised against the major structural subunit, LdaG, recognizes a 25-kDa protein from crude heat-extracted protein preparations and inhibits the adherence of the E. coli DH5α lda + clone to HEp-2 cells. Electron microscopy revealed a nonfimbrial structure surrounding the bacterial cell.


1999 ◽  
Vol 67 (10) ◽  
pp. 5455-5462 ◽  
Author(s):  
Toru Tobe ◽  
Tetsuya Hayashi ◽  
Chang-Gyun Han ◽  
Gary K. Schoolnik ◽  
Eiichi Ohtsubo ◽  
...  

ABSTRACT The complete nucleotide sequence and organization of the enteropathogenic Escherichia coli (EPEC) adherence factor (EAF) plasmid of EPEC strain B171 (O111:NM) were determined. The EAF plasmid encodes two known virulence-related operons, thebfp operon, which is composed of genes necessary for biosynthesis of bundle-forming pili, and the bfpTVW(perABC) operon, composed of regulatory genes required forbfp transcription and also for transcriptional activation of the eae gene in the LEE pathogenicity island on the EPEC chromosome. The 69-kb EAF plasmid, henceforth designated pB171, contains, besides the bfp and bfpTVW(perABC) operons, potential virulence-associated genes, plasmid replication and maintenance genes, and many insertion sequence elements. Of the newly identified open reading frames (ORFs), two which comprise a single operon had the potential to encode proteins with high similarity to a C-terminal region of ToxB whose coding sequence is located on pO157, a large plasmid harbored by enterohemorrhagicE. coli. Another ORF, located between the bfpand bfpTVW operons, showed high similarity withtrcA, a bfpT-regulated chaperone-like protein gene of EPEC. Two sites were found to be putative replication regions: one similar to RepFIIA of p307 or F, and the other similar to RepFIB of R100 (NR1). In addition, we identified a third region that contains plasmid maintenance genes. Insertion elements were scattered throughout the plasmid, indicating the mosaic nature of the EAF plasmid and suggesting evolutionary events by which virulence genes may have been obtained.


2001 ◽  
Vol 67 (4) ◽  
pp. 1911-1921 ◽  
Author(s):  
Yuemei Dong ◽  
Jeremy D. Glasner ◽  
Frederick R. Blattner ◽  
Eric W. Triplett

ABSTRACT In an effort to efficiently discover genes in the diazotrophic endophyte of maize, Klebsiella pneumoniae 342, DNA from strain 342 was hybridized to a microarray containing 96% (n = 4,098) of the annotated open reading frames fromEscherichia coli K-12. Using a criterion of 55% identity or greater, 3,000 (70%) of the E. coli K-12 open reading frames were also found to be present in strain 342. Approximately 24% (n = 1,030) of the E. coli K-12 open reading frames are absent in strain 342. For 1.6% (n= 68) of the open reading frames, the signal was too low to make a determination regarding the presence or absence of the gene. Genes with high identity between the two organisms are those involved in energy metabolism, amino acid metabolism, fatty acid metabolism, cofactor synthesis, cell division, DNA replication, transcription, translation, transport, and regulatory proteins. Functions that were less highly conserved included carbon compound metabolism, membrane proteins, structural proteins, putative transport proteins, cell processes such as adaptation and protection, and central intermediary metabolism. Open reading frames of E. coli K-12 with little or no identity in strain 342 included putative regulatory proteins, putative chaperones, surface structure proteins, mobility proteins, putative enzymes, hypothetical proteins, and proteins of unknown function, as well as genes presumed to have been acquired by lateral transfer from sources such as phage, plasmids, or transposons. The results were in agreement with the physiological properties of the two strains. Whole genome comparisons by genomic interspecies microarray hybridization are shown to rapidly identify thousands of genes in a previously uncharacterized bacterial genome provided that the genome of a close relative has been fully sequenced. This approach will become increasingly more useful as more full genome sequences become available.


Sign in / Sign up

Export Citation Format

Share Document