scholarly journals Nuclear Genome Assembly of the Microalga Nannochloropsis salina CCMP1776

2019 ◽  
Vol 8 (44) ◽  
Author(s):  
J. A. Ohan ◽  
B. T. Hovde ◽  
X. L. Zhang ◽  
K. W. Davenport ◽  
O. Chertkov ◽  
...  

Nannochloropsis salina is a halotolerant, high-lipid-producing microalga that is being explored as a biofuel production species. Here, we report an improved high-quality draft assembly and annotation for the nuclear genome of N. salina strain CCMP1776.

2021 ◽  
Vol 10 (28) ◽  
Author(s):  
Rikesh Jain ◽  
Bianca H. Habermann ◽  
Tâm Mignot

Myxococcus xanthus is a Gram-negative social bacterium belonging to the order Myxococcales of the class Deltaproteobacteria . It is a facultative social predator found in soils across the globe and is thought to be crucial for the microbial ecosystem. Here, we report a complete high-quality reference genome of the M. xanthus strain DZ2.


2019 ◽  
Vol 8 (36) ◽  
Author(s):  
Rachel J. Warmington ◽  
William Kay ◽  
Aaron Jeffries ◽  
Paul O’Neill ◽  
Audrey Farbos ◽  
...  

We present a high-quality draft genome assembly for Fusarium oxysporum f. sp. cubense tropical race 4 (Fusarium odoratissimum), assembled from PacBio reads and consisting of 15 contigs with a total assembly size of 48.59 Mb. This strain appears to belong to vegetative compatibility group complex 01213/16.


2021 ◽  
Vol 10 (21) ◽  
Author(s):  
Jason E. Stajich ◽  
Andrea L. Vu ◽  
Howard S. Judelson ◽  
Gregory M. Vogel ◽  
Michael A. Gore ◽  
...  

The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.


2021 ◽  
Author(s):  
Brandon D. Pickett ◽  
Jessica R. Glass ◽  
Perry G. Ridge ◽  
John S. K. Kauwe

ABSTRACTCaranx ignobilis, commonly known as the kingfish or giant trevally, is a large, reef-associated apex predator. It is a prized sportfish, targeted heavily throughout its tropical and subtropical range in the Indian and Pacific Oceans, and it has drawn significant interest in aquaculture due to an unusual tolerance for freshwater. In this study, we present a high-quality nuclear genome assembly of a C. ignobilis individual from Hawaiian waters, which have recently been shown to host a genetically distinct population. The assembly has a contig NG50 of 7.3Mbp and scaffold NG50 of 46.3Mbp. Twenty-five of the 203 scaffolds contain 90% of the genome. We also present the raw Pacific Biosciences continuous long-reads from which the assembly was created. A Hi-C dataset (Dovetail Genomics Omni-C) and Illumina-based RNA-seq from eight tissues are also presented; the latter of which can be particularly useful for annotation and studies of freshwater tolerance. Overall, this genome assembly and supporting data is a valuable tool for ecological and comparative genomics studies of kingfish and other carangoid fishes.


2021 ◽  
Author(s):  
Igor Filipović ◽  
Gordana Rašić ◽  
James Hereward ◽  
Maria Gharuka ◽  
Gregor J Devine ◽  
...  

Background: An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. Results: High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.11%). These quality metrics place our assembly as the most complete of the published Coleopteran genomes. The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes showing BUSCO completeness of 92.09%, as well as the expected number of non-coding RNAs and the number and structure of paralogous genes in a gene family like Sigma GST. Conclusions: The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.


2019 ◽  
Vol 8 (29) ◽  
Author(s):  
Shuta Asai ◽  
Yu Ayukawa ◽  
Pamela Gan ◽  
Sachiko Masuda ◽  
Ken Komatsu ◽  
...  

Fusarium oxysporum f. sp. cubense is the causal agent of banana Fusarium wilt, also known as Panama disease. Here, we present a high-quality genome sequence of F. oxysporum f. sp. cubense strain 160527. The genome assembly is composed of 12 contigs with a total assembly length of 51,139,495 bp (N 50 contig length, 4,884,632 bp).


2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Peter M. Henry ◽  
Michelle Stueven ◽  
Sampson Li ◽  
Eugene M. Miyao ◽  
Thomas R. Gordon ◽  
...  

Fusarium wilt of tomato, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is an increasingly important disease of tomato. This paper reports the high-quality draft genome assembly of F. oxysporum f. sp. lycopersici isolate D11 (race 3), which consists of 39 scaffolds with 57,281,978 bp (GC content, 47.5%), an N 50 of 4,408,267 bp, a mean read coverage of 99.8×, and 17,682 predicted genes.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
C. Raul Gonzalez-Esquer ◽  
Scott N. Twary ◽  
Blake T. Hovde ◽  
Shawn R. Starkenburg

ABSTRACT Picochlorum soloecismus is a halotolerant, fast-growing, and moderate-lipid-producing microalga that is being evaluated as a renewable feedstock for biofuel production. Herein, we report on an improved high-quality draft assembly and annotation for the nuclear, chloroplast, and mitochondrial genomes of P. soloecismus DOE 101.


2021 ◽  
Author(s):  
Hsiao-Pei Yang ◽  
Marius Wenzel ◽  
Duncan A Hauser ◽  
Jessica M Nelson ◽  
Xia Xu ◽  
...  

Members of eustigmatophyte algae, especially Nannochloropsis, have been tapped for biofuel production owing to their exceptionally high lipid content. While extensive genomic, transcriptomic, and synthetic biology toolkits have been made available for Nannochloropsis, very little is known about other eustigmatophytes. Here we present three near-chromosomal and gapless genome assemblies of Monodopsis (60 Mb) and Vischeria (106 Mb), which are the sister groups to Nannochloropsis. These genomes contain unusually high percentages of simple repeats, ranging from 12% to 21% of the total assembly size. Unlike Nannochloropsis, LINE repeats are abundant in Monodopsis and Vischeria and might constitute the centromeric regions. We found that both mevalonate and non-mevalonate pathways for terpenoid biosynthesis are present in Monodopsis and Vischeria, which is different from Nannochloropsis that has only the latter. Our analysis further revealed extensive spliced leader trans-splicing in Monodopsis and Vischeria at 36-61% of genes. Altogether, the high-quality genomes of Monodopsis and Vischeria not only serve as the much-needed outgroups to advance Nannochloropsis research, but also shed new light on the biology and evolution of eustigmatophyte algae.


DNA Research ◽  
2019 ◽  
Vol 26 (4) ◽  
pp. 287-299 ◽  
Author(s):  
Dana C Price ◽  
Ursula W Goodenough ◽  
Robyn Roth ◽  
Jae-Hyeok Lee ◽  
Thamali Kariyawasam ◽  
...  

Abstract Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.


Sign in / Sign up

Export Citation Format

Share Document