scholarly journals Genome of a Giant (Trevally): Caranx ignobilis

2021 ◽  
Author(s):  
Brandon D. Pickett ◽  
Jessica R. Glass ◽  
Perry G. Ridge ◽  
John S. K. Kauwe

ABSTRACTCaranx ignobilis, commonly known as the kingfish or giant trevally, is a large, reef-associated apex predator. It is a prized sportfish, targeted heavily throughout its tropical and subtropical range in the Indian and Pacific Oceans, and it has drawn significant interest in aquaculture due to an unusual tolerance for freshwater. In this study, we present a high-quality nuclear genome assembly of a C. ignobilis individual from Hawaiian waters, which have recently been shown to host a genetically distinct population. The assembly has a contig NG50 of 7.3Mbp and scaffold NG50 of 46.3Mbp. Twenty-five of the 203 scaffolds contain 90% of the genome. We also present the raw Pacific Biosciences continuous long-reads from which the assembly was created. A Hi-C dataset (Dovetail Genomics Omni-C) and Illumina-based RNA-seq from eight tissues are also presented; the latter of which can be particularly useful for annotation and studies of freshwater tolerance. Overall, this genome assembly and supporting data is a valuable tool for ecological and comparative genomics studies of kingfish and other carangoid fishes.

Author(s):  
Martin Stervander ◽  
William A Cresko

Abstract The fish order Syngnathiformes has been referred to as a collection of misfit fishes, comprising commercially important fish such as red mullets as well as the highly diverse seahorses, pipefishes, and seadragons—the well-known family Syngnathidae, with their unique adaptations including male pregnancy. Another ornate member of this order is the species mandarinfish. No less than two types of chromatophores have been discovered in the spectacularly colored mandarinfish: the cyanophore (producing blue color) and the dichromatic cyano-erythrophore (producing blue and red). The phylogenetic position of mandarinfish in Syngnathiformes, and their promise of additional genetic discoveries beyond the chromatophores, made mandarinfish an appealing target for whole genome sequencing. We used linked sequences to create synthetic long reads, producing a highly contiguous genome assembly for the mandarinfish. The genome assembly comprises 483 Mbp (longest scaffold 29 Mbp), has an N50 of 12 Mbp, and an L50 of 14 scaffolds. The assembly completeness is also high, with 92.6% complete, 4.4% fragmented, and 2.9% missing out of 4,584 BUSCO genes found in ray-finned fishes. Outside the family Syngnathidae, the mandarinfish represents one of the most contiguous syngnathiform genome assemblies to date. The mandarinfish genomic resource will likely serve as a high-quality outgroup to syngnathid fish, and furthermore for research on the genomic underpinnings of the evolution of novel pigmentation.


2019 ◽  
Author(s):  
Josip Marić ◽  
Ivan Sović ◽  
Krešimir Križanović ◽  
Niranjan Nagarajan ◽  
Mile Šikić

AbstractIn this paper we present Graphmap2, a splice-aware mapper built on our previously developed DNA mapper Graphmap. Graphmap2 is tailored for long reads produced by Pacific Biosciences and Oxford Nanopore devices. It uses several newly developed algorithms which enable higher precision and recall of correctly detected transcripts and exon boundaries. We compared its performance with the state-of-the-art tools Minimap2 and Gmap. On both simulated and real datasets Graphmap2 achieves higher mappability and more correctly recognized exons and their ends. In addition we present an analysis of potential of splice aware mappers and long reads for the identification of previously unknown isoforms and even genes. The Graphmap2 tool is publicly available at https://github.com/lbcb-sci/graphmap2.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Linlin Zhao ◽  
Shengyong Xu ◽  
Zhiqiang Han ◽  
Qi Liu ◽  
Wensi Ke ◽  
...  

Abstract Argyrosomus japonicus is an economically and ecologically important fish species in the family Sciaenidae with a wide distribution in the world’s oceans. Here, we report a high-quality, chromosome-level genome assembly of A. japonicus based on PacBio and Hi-C sequencing technology. A 673.7-Mb genome containing 282 contigs with an N50 length of 18.4 Mb was obtained based on PacBio long reads. These contigs were further ordered and clustered into 24 chromosome groups based on Hi-C data. In addition, a total of 217.2 Mb (32.24% of the assembled genome) of sequences were identified as repeat elements, and 23,730 protein-coding genes were predicted based on multiple approaches. More than 97% of BUSCO genes were identified in the A. japonicus genome. The high-quality genome assembled in this work not only provides a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of A. japonicus but also lays a solid foundation for the study of Sciaenidae evolution.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2021 ◽  
Vol 10 (21) ◽  
Author(s):  
Jason E. Stajich ◽  
Andrea L. Vu ◽  
Howard S. Judelson ◽  
Gregory M. Vogel ◽  
Michael A. Gore ◽  
...  

The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.


2019 ◽  
Vol 8 (44) ◽  
Author(s):  
J. A. Ohan ◽  
B. T. Hovde ◽  
X. L. Zhang ◽  
K. W. Davenport ◽  
O. Chertkov ◽  
...  

Nannochloropsis salina is a halotolerant, high-lipid-producing microalga that is being explored as a biofuel production species. Here, we report an improved high-quality draft assembly and annotation for the nuclear genome of N. salina strain CCMP1776.


Author(s):  
Luca Degradi ◽  
Valeria Tava ◽  
Andrea Kunova ◽  
Paolo Cortesi ◽  
Marco Saracchi ◽  
...  

Fusarium musae van Hove causes crown rot of banana and it is also associated to clinical fusariosis. A chromosome-level genome assembly of Fusarium musae F31 obtained combining Nanopore long reads and Illumina paired end reads resulted in 12 chromosomes plus one contig with overall N50 of 4.36 Mb, and is presented together with its mitochondrial genome (58072 bp). F31 genome includes telomeric regions for 11 of the 12 chromosomes representing the most complete genome available in the Fusarium fujikuroi species complex. The high-quality assembly of the F31 genome will be a valuable resource for studying the pathogenic interactions occurring between F. musae and banana. Moreover, it represents an important resource for understanding the genome evolution in the Fusarium fujikuroi species complex.


2021 ◽  
Author(s):  
Alexandre Wagner Silva Hilsdorf ◽  
Marcela Uliano-Silva ◽  
Luiz Lehmann Coutinho ◽  
Horácio Montenegro ◽  
Vera Maria Fonseca Almeida-Val ◽  
...  

ABSTRACTColossoma macropomum known as “tambaqui” is the largest Characiformes fish in the Amazon River Basin and a leading species in Brazilian aquaculture and fisheries. Good quality meat and great adaptability to culture systems are some of its remarkable farming features. To support studies into the genetics and genomics of the tambaqui, we have produced the first high-quality genome for the species. We combined Illumina and PacBio sequencing technologies to generate a reference genome, assembled with 39X coverage of long reads and polished to a QV=36 with 130X coverage of short reads. The genome was assembled into 1,269 scaffolds to a total of 1,221,847,006 bases, with a scaffold N50 size of 40 Mb where 93% of all assembled bases were placed in the largest 54 scaffolds that corresponds to the diploid karyotype of the tambaqui. Furthermore, the NCBI Annotation Pipeline annotated genes, pseudogenes, and non-coding transcripts using the RefSeq database as evidence, guaranteeing a high-quality annotation. A Genome Data Viewer for the tambaqui was produced which benefits any groups interested in exploring unique genomic features of the species. The availability of a highly accurate genome assembly for tambaqui provides the foundation for novel insights about ecological and evolutionary facets and is a helpful resource for aquaculture purposes.


2021 ◽  
Author(s):  
Igor Filipović ◽  
Gordana Rašić ◽  
James Hereward ◽  
Maria Gharuka ◽  
Gregor J Devine ◽  
...  

Background: An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. Results: High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.11%). These quality metrics place our assembly as the most complete of the published Coleopteran genomes. The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes showing BUSCO completeness of 92.09%, as well as the expected number of non-coding RNAs and the number and structure of paralogous genes in a gene family like Sigma GST. Conclusions: The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.


Sign in / Sign up

Export Citation Format

Share Document