scholarly journals High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut

mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Timothy Heisel ◽  
Emmanuel Montassier ◽  
Abigail Johnson ◽  
Gabriel Al-Ghalith ◽  
Yi-Wei Lin ◽  
...  

ABSTRACT Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet. Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet.

2020 ◽  
Author(s):  
Lisa. S. Robison ◽  
Olivia J. Gannon ◽  
Melissa A. Thomas ◽  
Abigail E. Salinero ◽  
Charly Abi-Ghanem ◽  
...  

AbstractHypothalamic dysfunction occurs early in the clinical course of Alzheimer’s disease (AD), likely contributing to disturbances in feeding behavior and metabolic function that are often observable years prior to the onset of cognitive symptoms. Late-life weight loss and low BMI are associated with increased risk of dementia and faster progression of disease. However, high fat diet and metabolic disease (e.g. obesity, type 2 diabetes), particularly in mid-life, are associated with increased risk of AD, as well as exacerbated AD pathology and behavioral deficits in animal models. In the current study, we explored possible relationships between hypothalamic function, diet/metabolic status, and AD. Considering the sex bias in AD, with women representing two-thirds of AD patients, we sought to determine whether these relationships vary by sex. WT and 3xTg-AD male and female mice were fed a control (10% fat) or high fat (HF; 60% diet) diet from ~3-7 months of age, then tested for metabolic and hypothalamic disturbances. On control diet, male 3xTg-AD mice displayed decreased body weight, reduced fat mass, hypoleptinemia, and mild systemic inflammation, as well as increased expression of gliosis- and inflammation-related genes in the hypothalamus (Iba1, GFAP, TNF-α, IL-1β). In contrast, female 3xTg-AD mice on control diet displayed metabolic disturbances opposite that of 3xTg-AD males (increased body and fat mass, impaired glucose tolerance). HF diet resulted in expected metabolic alterations across groups (increased body and fat mass; glucose intolerance; increased plasma insulin and leptin, decreased ghrelin; nonalcoholic fatty liver disease-related pathology). HF diet resulted in the greatest weight gain, adiposity, and glucose intolerance in 3xTg-AD females, which were associated with markedly increased hypothalamic expression of GFAP and IL-1β, as well as GFAP labeling in several hypothalamic nuclei that regulate energy balance. In contrast, HF diet increased diabetes markers and systemic inflammation preferentially in AD males but did not exacerbate hypothalamic inflammation in this group. These findings provide further evidence for the roles of hypothalamic and metabolic dysfunction in AD, which in the 3xTg-AD mouse model appears to be dependent on both sex and diet.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Lisa S. Robison ◽  
Olivia J. Gannon ◽  
Melissa A. Thomas ◽  
Abigail E. Salinero ◽  
Charly Abi-Ghanem ◽  
...  

Abstract Background Hypothalamic dysfunction occurs early in the clinical course of Alzheimer’s disease (AD), likely contributing to disturbances in feeding behavior and metabolic function that are often observed years prior to the onset of cognitive symptoms. Late-life weight loss and low BMI are associated with increased risk of dementia and faster progression of disease. However, high-fat diet and metabolic disease (e.g., obesity, type 2 diabetes), particularly in mid-life, are associated with increased risk of AD, as well as exacerbated AD pathology and behavioral deficits in animal models. In the current study, we explored possible relationships between hypothalamic function, diet/metabolic status, and AD. Considering the sex bias in AD, with women representing two-thirds of AD patients, we sought to determine whether these relationships vary by sex. Methods WT and 3xTg-AD male and female mice were fed a control (10% fat) or high-fat (HF 60% fat) diet from ~ 3–7 months of age, then tested for metabolic and hypothalamic disturbances. Results On control diet, male 3xTg-AD mice displayed decreased body weight, reduced fat mass, hypoleptinemia, and mild systemic inflammation, as well as increased expression of gliosis- and inflammation-related genes in the hypothalamus (Iba1, GFAP, TNF-α, IL-1β). In contrast, female 3xTg-AD mice on control diet displayed metabolic disturbances opposite that of 3xTg-AD males (increased body and fat mass, impaired glucose tolerance). HF diet resulted in expected metabolic alterations across groups (increased body and fat mass; glucose intolerance; increased plasma insulin and leptin, decreased ghrelin; nonalcoholic fatty liver disease-related pathology). HF diet resulted in the greatest weight gain, adiposity, and glucose intolerance in 3xTg-AD females, which were associated with markedly increased hypothalamic expression of GFAP and IL-1β, as well as GFAP labeling in several hypothalamic nuclei that regulate energy balance. In contrast, HF diet increased diabetes markers and systemic inflammation preferentially in AD males but did not exacerbate hypothalamic inflammation in this group. Conclusions These findings provide further evidence for the roles of hypothalamic and metabolic dysfunction in AD, which in the 3xTg-AD mouse model appears to be dependent on both sex and diet.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


Author(s):  
Alejandra Freire Fernández-Regatillo ◽  
María L. de Ceballos ◽  
Jesús Argente ◽  
Sonia Díaz Pacheco ◽  
Clara González Martínez

2018 ◽  
Vol 16 (1) ◽  
pp. 1 ◽  
Author(s):  
AZRUL HILDAN SAFRIZAL

<p>The pattern and lifestyle of today's society with the presence of an interner facility makes people spend more time sitting out than on exercise and increased consumption of high-fat foods may increase the risk of cardiovascular disease. An effective therapy is needed in preventing the occurrence of cardiovascular disease. Hyperbaric oxygen now starts to develop for the treatment of several diseases, which in turn can increase the gene forming antioxidant enzymes and ROS. To determine effect of hyperbaric oxygen therapy on total cholesterol levels of wistar white rats (Rattusnovergicus) induced bye high fat. The study was carried out in an expeative post test only group control of three groups. One group is given standard feed. All groups induced high-fat diet and standard feed. Of the two groups induced, one group was given hyperbaric oxygen therapy with a dose of 3 x 30 minutes for six days on day 7 at a blood test to determine total cholesterol levels<strong>. </strong>One way Anova parametric statistic test showed that p = 0.007 &lt; α proved hypothesis that hyperbaric oxygen therapy giving effect to total cholesterol level of white mice of jantangalurist rings induced by high fat diet. Total cholesterol was significantly different between K (-) and K (+) and between K (-) and P. It was found that hyperbaric oxygen therapy had an effect on total cholesterol level dose of 3x30 minutes for six days.</p>


2015 ◽  
Vol 44 (8) ◽  
pp. 1105-1113
Author(s):  
Hyelin Jeon ◽  
Sungmin Kwak ◽  
Su-Jin Oh ◽  
Hyun Soo Nam ◽  
Doo Won Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document