scholarly journals The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification

mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
M. Desroches ◽  
G. Royer ◽  
D. Roche ◽  
M. Mercier-Darty ◽  
D. Vallenet ◽  
...  

Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations inrpoSand efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution ofE. coliof Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165–170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.

2021 ◽  
Vol 288 (1946) ◽  
pp. 20202967
Author(s):  
Romana Limberger ◽  
Gregor F. Fussmann

Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.


2019 ◽  
Author(s):  
Romana Limberger ◽  
Gregor F. Fussmann

AbstractEvolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for ~180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009820
Author(s):  
Mark Achtman ◽  
Frederik Van den Broeck ◽  
Kerry K. Cooper ◽  
Philippe Lemey ◽  
Craig T. Parker ◽  
...  

Salmonella enterica serovar Typhimurium strain ATCC14028s is commercially available from multiple national type culture collections, and has been widely used since 1960 for quality control of growth media and experiments on fitness (“laboratory evolution”). ATCC14028s has been implicated in multiple cross-contaminations in the laboratory, and has also caused multiple laboratory infections and one known attempt at bioterrorism. According to hierarchical clustering of 3002 core gene sequences, ATCC14028s belongs to HierCC cluster HC20_373 in which most internal branch lengths are only one to three SNPs long. Many natural Typhimurium isolates from humans, domesticated animals and the environment also belong to HC20_373, and their core genomes are almost indistinguishable from those of laboratory strains. These natural isolates have infected humans in Ireland and Taiwan for decades, and are common in the British Isles as well as the Americas. The isolation history of some of the natural isolates confirms the conclusion that they do not represent recent contamination by the laboratory strain, and 10% carry plasmids or bacteriophages which have been acquired in nature by HGT from unrelated bacteria. We propose that ATCC14028s has repeatedly escaped from the laboratory environment into nature via laboratory accidents or infections, but the escaped micro-lineages have only a limited life span. As a result, there is a genetic gap separating HC20_373 from its closest natural relatives due to a divergence between them in the late 19th century followed by repeated extinction events of escaped HC20_373.


2020 ◽  
Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background: The widespread application of triclosan contributes to its residual deposition in urine, which provides an environment of long-term exposure to triclosan for the intestinal Escherichia coli. We determined the triclosan and antibiotic resistance characteristics of E. coli strains isolated from urine samples and further investigated the resistance mechanism and molecular epidemic characteristics of triclosan-resistant E. coli isolates. Methods: A total of 200 non-repetitive E. coli strains were isolated from urine samples and then identified. The minimum inhibitory concentrations (MICs) of triclosan and antibiotics, fabI mutation, efflux pump activity, the expression of 14 efflux pump encoding genes, and epidemiological characteristics were determined by the agar dilution method, polymerase chain reaction (PCR), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibition test, quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing (MLST), and pulse-field gel electrophoresis (PFGE) for all triclosan-resistant isolates. Furthermore, we also investigated the effect of triclosan exposure in vitro on antibiotic susceptibility and the efflux pump encoding gene expressions of triclosan-susceptible strains via serial passage experiments. Results: Of the 200 E. coli isolates, 2.5% (n = 5) were found to be resistant to triclosan, and multidrug resistance (MDR) and cross-resistance phenotypes were noted for these triclosan-resistant strains. The triclosan-sensitive strains also exhibited MDR phenotypes, probably because of the high resistance rate to AMP, CIP, LVX, and GEN. Gly79Ala and Ala69Thr amino acid changes were observed in the triclosan-resistant strains, but these changes may not mediate resistance of E. coli to triclosan, because mutations of these two amino acids has also been detected in triclosan-susceptible strains. Moreover, except for DC8603, all other strains enhanced the efflux pumps activity. As compared with ATCC 25922, except for fabI, increased expressions were noted for all efflux pump encoding genes such as ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD, and mdfA among the studied strains with varying PFGE patterns and STs types. Unexpectedly, 5 susceptible E. coli isolates showed rapidly increasing triclosan resistance after exposure to triclosan in vitro for only 12 days, while MDR or cross-resistance phenotypes and the overexpression of efflux pump genes were recorded among these triclosan-induced resistant isolates. Conclusions: This is the first study to report that short-term triclosan exposure in vitro increases triclosan resistance in susceptible E. coli isolates. After acquiring resistance, these strains may present MDR or cross-resistance phenotypes. Moreover, triclosan resistance mainly involves the overexpression of fabI and efflux pumps in E. coli isolates.


2020 ◽  
Author(s):  
Milo S. Johnson ◽  
Shreyas Gopalakrishnan ◽  
Juhee Goyal ◽  
Megan E. Dillingham ◽  
Christopher W. Bakerlee ◽  
...  

AbstractLaboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 S. cerevisiae populations (124 haploid and 81 diploid) for ∼10,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.


2020 ◽  
Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background Widespread use of triclosan has been reported to cause its residue in urine, which provides an environment of long-term exposure to triclosan for intestinal Escherichia coli. We aimed to determine the triclosan and antibiotic resistance characteristics of Escherichia coli strains isolated from urine, and further investigate the resistance mechanism and molecular epidemic characteristics of triclosan resistant Escherichia coli isolates. Methods A total of 200 non-repetitive E. coli strains from urine samples were obtained and identified. The minimum inhibitory concentrations (MICs) of triclosan and antibiotics, fabI mutation, efflux pump activity, expression of 14 efflux pump encoding genes and epidemiological characteristics were detected with agar dilution method, polymerase chain reaction (PCR), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibition test, quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing (MLST) and pulse field gel electrophoresis (PFGE) in all triclosan resistant isolates. Furthermore, we also investigated the effect of triclosan exposure in vitro on resistance in susceptible strains by serial passage experiment. Results Of 200 E. coli isolates, 2.5% (n = 5) were resistant to triclosan, multidrug resistance (MDR) and cross-resistance phenotypes were observed in these resistant strains, but not in susceptible strains. We did not observe any sense mutations within fabI gene in triclosan resistant strains. Moreover, except DC8603, all the others enhanced efflux pumps activity. Compared with ATCC 25922, except fabI, increased expression were also found in efflux pump encoding genes ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD and mdfA in studied strains with different PFGE patterns and STs types. Surprised, 5 susceptible E. coli isolates increased rapidly triclosan resistance only 4 days after exposure to subinhibitory triclosan concentration in vitro. Conclusions Our study is the first to be reported that short-term triclosan exposure in vitro increases triclosan resistance in susceptible E. coli isolates. Once strains have acquired resistance, they usually present MDR or cross-resistance phenotypes. Besides, our findings indicate that triclosan resistance were mainly involved by fabI overexpression in E. coli, and there was a close association between overexpression of efflux pumps with triclosan resistance.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Milo S Johnson ◽  
Shreyas Gopalakrishnan ◽  
Juhee Goyal ◽  
Megan E Dillingham ◽  
Christopher W Bakerlee ◽  
...  

Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.


Author(s):  
Weiliang Zeng ◽  
Wenya Xu ◽  
Ye Xu ◽  
Wenli Liao ◽  
Yajie Zhao ◽  
...  

Abstract Background The widespread application of triclosan contributes to its residual deposition in urine, which provides an environment of long-term exposure to triclosan for the intestinal Escherichia coli. We determined the triclosan and antibiotic resistance characteristics of E. coli strains isolated from urine samples and further investigated the resistance mechanism and molecular epidemic characteristics of triclosan-resistant E. coli isolates. Methods A total of 200 non-repetitive E. coli strains were isolated from urine samples and then identified. The minimum inhibitory concentrations (MICs) of triclosan and antibiotics, fabI mutation, efflux pump activity, the expression of 14 efflux pump encoding genes, and epidemiological characteristics were determined by the agar dilution method, polymerase chain reaction (PCR), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibition test, quantitative real-time polymerase chain reaction (RT-qPCR), multilocus sequence typing (MLST), and pulse-field gel electrophoresis (PFGE) for all triclosan-resistant isolates. Furthermore, we also investigated the effect of triclosan exposure in vitro on antibiotic susceptibility and the efflux pump encoding gene expressions of triclosan-susceptible strains via serial passage experiments. Results Of the 200 E. coli isolates, 2.5% (n = 5) were found to be resistant to triclosan, and multidrug resistance (MDR) and cross-resistance phenotypes were noted for these triclosan-resistant strains. The triclosan-sensitive strains also exhibited MDR phenotypes, probably because of the high resistance rate to AMP, CIP, LVX, and GEN. Gly79Ala and Ala69Thr amino acid changes were observed in the triclosan-resistant strains, but these changes may not mediate resistance of E. coli to triclosan, because mutations of these two amino acids has also been detected in triclosan-susceptible strains. Moreover, except for DC8603, all other strains enhanced the efflux pumps activity. As compared with ATCC 25922, except for fabI, increased expressions were noted for all efflux pump encoding genes such as ydcV, ydcU, ydcS, ydcT, cysP, yihV, acrB, acrD, and mdfA among the studied strains with varying PFGE patterns and STs types. Unexpectedly, 5 susceptible E. coli isolates showed rapidly increasing triclosan resistance after exposure to triclosan in vitro for only 12 days, while MDR or cross-resistance phenotypes and the overexpression of efflux pump genes were recorded among these triclosan-induced resistant isolates. Conclusions This is the first study to report that short-term triclosan exposure in vitro increases triclosan resistance in susceptible E. coli isolates. After acquiring resistance, these strains may present MDR or cross-resistance phenotypes. Moreover, triclosan resistance mainly involves the overexpression of fabI and efflux pumps in E. coli isolates.


Author(s):  
Eman A. El-Masry ◽  
Ahmed E. Taha ◽  
Soma E. Ajlan

There is a possible link between exposure to Triclosan (TCS) and changes in antimicrobial susceptibility. The change in the tolerance of clinical Escherichia coli (n=45) isolates to the biocide TCS, changes in antibiotic resistance and differences in the efflux pump mechanism were analyzed. 45 E. coli isolates were obtained. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) of TCS, and the expression of four efflux pump encoding genes in antibiotic-resistant isolates were determined before and after TCS adaptation. The number of TCS-tolerant isolates was 11 (24.4%). After adaptation, the percentage of tolerant isolates increased to 42.2% (n=19). A significant change (p<0.05) in antimicrobial resistance of the tested isolates (n=45) before and after TCS adaptation was detected for ceftazidime, ceftriaxone, ertapenem, imipenem, amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxacin and doxycycline. Among the new TCS tolerant isolates (n=8). there was an increase in TCS MIC as well as the MBC after TSC adaptation. The adapted isolates exhibited a significant increase in the expression of mdfA and norE genes (p=<0.001). There is a strong correlation between efflux pump gene overexpression and susceptibility to TCS and other antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document