scholarly journals Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Liesbeth Demuyser ◽  
Ilse Palmans ◽  
Paul Vandecruys ◽  
Patrick Van Dijck

ABSTRACT Candida albicans is a major cause of fungal infections, both superficial and invasive. The economic costs as well as consequences for patient welfare are substantial. Only a few treatment options are available due to the high resemblance between fungal targets and host molecules, as both are eukaryotes. Riboflavin is a yellow pigment, also termed vitamin B2. Unlike animals, fungi can synthesize this essential component themselves, thereby leading us to appreciate that targeting riboflavin production is a promising novel strategy against fungal infections. Here, we report that the GTP cyclohydrolase encoded by C. albicans RIB1 (CaRIB1) is essential and rate-limiting for production of riboflavin in the fungal pathogen. We confirm the high potential of CaRib1 as an antifungal drug target, as its deletion completely impairs in vivo infectibility by C. albicans in model systems. Furthermore, the stimulating effect of iron deprivation and PKA activation on riboflavin production seems to involve CaRib1 and the upstream transcription factor CaSef1. Gathering insights in the synthesis mechanism of riboflavin in pathogenic fungi, like C. albicans, will allow us to design a novel strategy and specifically target this process to combat fungal infections. IMPORTANCE Candida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection.

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Lauren Wensing ◽  
Jehoshua Sharma ◽  
Deeva Uthayakumar ◽  
Yannic Proteau ◽  
Alejandro Chavez ◽  
...  

ABSTRACT Fungal pathogens are emerging as an important cause of human disease, and Candida albicans is among the most common causative agents of fungal infections. Studying this fungal pathogen is of the utmost importance and necessitates the development of molecular technologies to perform comprehensive genetic and functional genomic analysis. Here, we designed and developed a novel clustered regularly interspaced short palindromic repeat interference (CRISPRi) system for targeted genetic repression in C. albicans. We engineered a nuclease-dead Cas9 (dCas9) construct that, paired with a guide RNA targeted to the promoter of an endogenous gene, is capable of targeting that gene for transcriptional repression. We further optimized a favorable promoter locus to achieve repression and demonstrated that fusion of dCas9 to an Mxi1 repressor domain was able to further enhance transcriptional repression. Finally, we demonstrated the application of this CRISPRi system through genetic repression of the essential molecular chaperone HSP90. This is the first demonstration of a functional CRISPRi repression system in C. albicans, and this valuable technology will enable many future applications in this critical fungal pathogen. IMPORTANCE Fungal pathogens are an increasingly important cause of human disease and mortality, and Candida albicans is among the most common causes of fungal disease. Studying this important fungal pathogen requires a comprehensive genetic toolkit to establish how different genetic factors play roles in the biology and virulence of this pathogen. Here, we developed a CRISPR-based genetic regulation platform to achieve targeted repression of C. albicans genes. This CRISPR interference (CRISPRi) technology exploits a nuclease-dead Cas9 protein (dCas9) fused to transcriptional repressors. The dCas9 fusion proteins pair with a guide RNA to target genetic promoter regions and to repress expression from these genes. We demonstrated the functionality of this system for repression in C. albicans and show that we can apply this technology to repress essential genes. Taking the results together, this work presents a new technology for efficient genetic repression in C. albicans, with important applications for genetic analysis in this fungal pathogen.


2006 ◽  
Vol 5 (8) ◽  
pp. 1371-1377 ◽  
Author(s):  
Alexandra Rodaki ◽  
Tim Young ◽  
Alistair J. P. Brown

ABSTRACT The central metabolic enzyme fructose-1,6-bisphosphate aldolase (Fba1p) catalyzes a reversible reaction required for both glycolysis and gluconeogenesis. Fba1p is a potential antifungal target because it is essential in yeast and because fungal and human aldolases differ significantly. To test the validity of Fba1p as an antifungal target, we have examined the effects of depleting this enzyme in the major fungal pathogen Candida albicans. Using a methionine/cysteine-conditional mutant (MET3-FBA1/fba1), we have shown that Fba1p is required for the growth of C. albicans. However, Fba1p must be depleted to below 5% of wild-type levels before growth is blocked. Furthermore, Fba1p depletion exerts static rather than cidal effects upon C. albicans. Fba1p is a relatively abundant and stable protein in C. albicans, and hence, Fba1p levels decay relatively slowly following MET3-FBA1 shutoff. Taken together, our observations can account for our observation that the virulence of MET3-FBA1/fba1 cells is only partially attenuated in the mouse model of systemic candidiasis. We conclude that an antifungal drug directed against Fba1p would have to be potent to be effective.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Jing Xie ◽  
Sabrina Jenull ◽  
Michael Tscherner ◽  
Karl Kuchler

ABSTRACT Chromatin modifications affect gene regulation in response to environmental stimuli in numerous biological processes. For example, N -acetyl-glucosamine and CO 2 induce a morphogenetic conversion between white (W) and opaque (O) cells in MTL (mating-type locus) homozygous and heterozygous ( a /α) strains of the human fungal pathogen Candida albicans . Here, we identify 8 histone-modifying enzymes playing distinct roles in the regulation of W/O switching in MTL homozygous and heterozygous strains. Most strikingly, genetic removal of the paralogous genes RPD3 and RPD31 , both of which encode almost identical orthologues of the yeast histone deacetylase (HDAC) Rpd3, reveals opposing roles in W/O switching of MTL a /α strains. We show that Rpd3 and Rpd31 functions depend on MTL genotypes. Strikingly, we demonstrate that Rpd3 and Rpd31, which are almost identical except for a divergent C-terminal extension present in Rpd31, exert their functions in distinct regulatory complexes referred to as CaRpd3L and CaRpd31S complexes. Moreover, we identify the Candida orf19.7185 product Ume1, the orthologue of yeast Ume1, as a shared core subunit of CaRpd3L and CaRpd31S. Mechanistically, we show that the opposing roles of Rpd3 and Rpd31 require their deacetylase activities. Importantly, CaRpd3L interacts with the heterodimeric transcriptional repressor a 1/α2, thus controlling expression of WOR1 encoding the master regulator of W/O switching. Thus, our work provides novel insight about regulation mechanisms of W/O switching in MTL a /α strains. This is the first example of two highly conserved HDACs exerting opposing regulatory functions in the same process in a eukaryotic cell. IMPORTANCE RPD3 -like histone deacetylases (also called class I HDACs) are conserved from unicellular eukaryotes to mammals. Specifically, the genome of the human fungal pathogen Candida albicans , the most frequent cause of invasive fungal infections of high morbidity and mortality, harbors two almost identical paralogous HDACs, Rpd3 and Rpd31. We show here for the first time that Rpd3 and Rpd31 acquired functional divergence related to a distinct C-terminal domain. Rpd3 and Rpd31 associate with different complexes in the control regions of the master regulator gene WOR1 , which is required for white-opaque (W/O) morphogenesis, respectively. The ability to switch is important for fungal pathogenesis, since it enables distinct host niche colonization. This work is to the best of our knowledge the first description of two paralogous HDACs playing opposing functional roles in the same developmental process. Our work adds a new angle concerning the molecular understanding of HDACs in the regulation of cell fate decisions.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e02535-18 ◽  
Author(s):  
Lucian Duvenage ◽  
Louise A. Walker ◽  
Aleksandra Bojarczuk ◽  
Simon A. Johnston ◽  
Donna M. MacCallum ◽  
...  

ABSTRACT The human fungal pathogen Candida albicans requires respiratory function for normal growth, morphogenesis, and virulence. Mitochondria therefore represent an enticing target for the development of new antifungal strategies. This possibility is bolstered by the presence of characteristics specific to fungi. However, respiration in C. albicans, as in many fungal organisms, is facilitated by redundant electron transport mechanisms, making direct inhibition a challenge. In addition, many chemicals known to target the electron transport chain are highly toxic. Here we made use of chemicals with low toxicity to efficiently inhibit respiration in C. albicans. We found that use of the nitric oxide donor sodium nitroprusside (SNP) and of the alternative oxidase inhibitor salicylhydroxamic acid (SHAM) prevents respiration and leads to a loss of viability and to cell wall rearrangements that increase the rate of uptake by macrophages in vitro and in vivo. We propose that treatment with SNP plus SHAM (SNP+SHAM) leads to transcriptional changes that drive cell wall rearrangement but which also prime cells to activate the transition to hyphal growth. In line with this, we found that pretreatment of C. albicans with SNP+SHAM led to an increase in virulence. Our data reveal strong links between respiration, cell wall remodeling, and activation of virulence factors. Our findings demonstrate that respiration in C. albicans can be efficiently inhibited with chemicals that are not damaging to the mammalian host but that we need to develop a deeper understanding of the roles of mitochondria in cellular signaling if they are to be developed successfully as a target for new antifungals. IMPORTANCE Current approaches to tackling fungal infections are limited, and new targets must be identified to protect against the emergence of resistant strains. We investigated the potential of targeting mitochondria, which are organelles required for energy production, growth, and virulence, in the human fungal pathogen Candida albicans. Our findings suggest that mitochondria can be targeted using drugs that can be tolerated by humans and that this treatment enhances their recognition by immune cells. However, release of C. albicans cells from respiratory inhibition appears to activate a stress response that increases the levels of traits associated with virulence. Our results make it clear that mitochondria represent a valid target for the development of antifungal strategies but that we must determine the mechanisms by which they regulate stress signaling and virulence ahead of successful therapeutic advance.


2015 ◽  
Vol 14 (8) ◽  
pp. 755-774 ◽  
Author(s):  
Corey Frazer ◽  
Monika Joshi ◽  
Caroline Delorme ◽  
Darlene Davis ◽  
Richard J. Bennett ◽  
...  

ABSTRACT Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member Ca Kar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, Ca Kar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, Ca Kar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of Ca Kar3. We show that orf19.306 (dubbed CaCIK1 ) encodes a protein that forms a heterodimer with Ca Kar3, localizes Ca Kar3 to spindle pole bodies, and can bind microtubules and influence Ca Kar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to Ca Kar3 depletion, loss of Ca Cik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Namkha Nguyen ◽  
Morgan M. F. Quail ◽  
Aaron D. Hernday

ABSTRACT Candida albicans is the most common fungal pathogen of humans. Historically, molecular genetic analysis of this important pathogen has been hampered by the lack of stable plasmids or meiotic cell division, limited selectable markers, and inefficient methods for generating gene knockouts. The recent development of clustered regularly interspaced short palindromic repeat(s) (CRISPR)-based tools for use with C. albicans has opened the door to more efficient genome editing; however, previously reported systems have specific limitations. We report the development of an optimized CRISPR-based genome editing system for use with C. albicans. Our system is highly efficient, does not require molecular cloning, does not leave permanent markers in the genome, and supports rapid, precise genome editing in C. albicans. We also demonstrate the utility of our system for generating two independent homozygous gene knockouts in a single transformation and present a method for generating homozygous wild-type gene addbacks at the native locus. Furthermore, each step of our protocol is compatible with high-throughput strain engineering approaches, thus opening the door to the generation of a complete C. albicans gene knockout library. IMPORTANCE Candida albicans is the major fungal pathogen of humans and is the subject of intense biomedical and discovery research. Until recently, the pace of research in this field has been hampered by the lack of efficient methods for genome editing. We report the development of a highly efficient and flexible genome editing system for use with C. albicans. This system improves upon previously published C. albicans CRISPR systems and enables rapid, precise genome editing without the use of permanent markers. This new tool kit promises to expedite the pace of research on this important fungal pathogen.


2013 ◽  
Vol 57 (4) ◽  
pp. 1918-1920 ◽  
Author(s):  
K. F. Mitchell ◽  
H. T. Taff ◽  
M. A. Cuevas ◽  
E. L. Reinicke ◽  
H. Sanchez ◽  
...  

ABSTRACTCandidabiofilm infections pose an increasing threat in the health care setting due to the drug resistance associated with this lifestyle. Several mechanisms underlie the resistance phenomenon. InCandida albicans, one mechanism involves drug impedance by the biofilm matrix linked to β-1,3 glucan. Here, we show this is important for otherCandidaspp. We identified β-1,3 glucan in the matrix, found that the matrix sequesters antifungal drug, and enhanced antifungal susceptibility with matrix β-1,3 glucan hydrolysis.


2019 ◽  
Vol 16 (31) ◽  
pp. 250-257
Author(s):  
Patrícia Duarte Costa SILVA ◽  
Brenda Lavínia Calixto dos SANTOS ◽  
Gustavo Lima SOARES ◽  
Wylly Araújo de OLIVEIRA

Fungal infections caused by species of the genus Candida are responsible for high morbidity and mortality rates, mainly affecting immunocompromised individuals. Among fungi, Candida albicans is the most frequently isolated species of clinical specimens. A problem associated with increased resistance of pathogenic fungi to the agents used in the therapeutic regimen and the limited number of drugs to cure these infections. As a result, the search for new drugs with antifungal activity has become increasingly important. The aim of this study is to study the antifungal activity of citronellal alone and in combination with amphotericin B or ketoconazole. The Minimal Inhibitory Concentration of citronellal, amphotericin B and ketoconazole against strains of Candida albicans were evaluated by the microdilution technique, and the Minimum Fungicide Concentration of citronellal against the same strains was also performed. Through the checkerboard methodology the effect of the combination of citronelal with amphotericin B or with ketoconazole was determined. This study showed that the association of citronellal with ketoconazole was shown to be an additive against one of the strains of C. albicans and indifferent to another strain. While the combined activity of citronellal and amphotericin B demonstrated an indifferent effect on the strains tested.


2010 ◽  
Vol 9 (9) ◽  
pp. 1329-1342 ◽  
Author(s):  
Claire A. Walker ◽  
Beatriz L. Gómez ◽  
Héctor M. Mora-Montes ◽  
Kevin S. Mackenzie ◽  
Carol A. Munro ◽  
...  

ABSTRACT The fungal pathogen Candida albicans produces dark-pigmented melanin after 3 to 4 days of incubation in medium containing l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. Expression profiling of C. albicans revealed very few genes significantly up- or downregulated by growth in l-DOPA. We were unable to determine a possible role for melanin in the virulence of C. albicans. However, we showed that melanin was externalized from the fungal cells in the form of electron-dense melanosomes that were free or often loosely bound to the cell wall exterior. Melanin production was boosted by the addition of N-acetylglucosamine to the medium, indicating a possible association between melanin production and chitin synthesis. Melanin externalization was blocked in a mutant specifically disrupted in the chitin synthase-encoding gene CHS2. Melanosomes remained within the outermost cell wall layers in chs3Δ and chs2Δ chs3Δ mutants but were fully externalized in chs8Δ and chs2Δ chs8Δ mutants. All the CHS mutants synthesized dark pigment at equivalent rates from mixed membrane fractions in vitro, suggesting it was the form of chitin structure produced by the enzymes, not the enzymes themselves, that was involved in the melanin externalization process. Mutants with single and double disruptions of the chitinase genes CHT2 and CHT3 and the chitin pathway regulator ECM33 also showed impaired melanin externalization. We hypothesize that the chitin product of Chs3 forms a scaffold essential for normal externalization of melanosomes, while the Chs8 chitin product, probably produced in cell walls in greater quantity in the absence of CHS2, impedes externalization.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Robert Jordan Price ◽  
Esther Weindling ◽  
Judith Berman ◽  
Alessia Buscaino

ABSTRACT Eukaryotic genomes are packaged into chromatin structures that play pivotal roles in regulating all DNA-associated processes. Histone posttranslational modifications modulate chromatin structure and function, leading to rapid regulation of gene expression and genome stability, key steps in environmental adaptation. Candida albicans, a prevalent fungal pathogen in humans, can rapidly adapt and thrive in diverse host niches. The contribution of chromatin to C. albicans biology is largely unexplored. Here, we generated the first comprehensive chromatin profile of histone modifications (histone H3 trimethylated on lysine 4 [H3K4me3], histone H3 acetylated on lysine 9 [H3K9Ac], acetylated lysine 16 on histone H4 [H4K16Ac], and γH2A) across the C. albicans genome and investigated its relationship to gene expression by harnessing genome-wide sequencing approaches. We demonstrated that gene-rich nonrepetitive regions are packaged into canonical euchromatin in association with histone modifications that mirror their transcriptional activity. In contrast, repetitive regions are assembled into distinct chromatin states; subtelomeric regions and the ribosomal DNA (rDNA) locus are assembled into heterochromatin, while major repeat sequences and transposons are packaged in chromatin that bears features of euchromatin and heterochromatin. Genome-wide mapping of γH2A, a marker of genome instability, identified potential recombination-prone genomic loci. Finally, we present the first quantitative chromatin profiling in C. albicans to delineate the role of the chromatin modifiers Sir2 and Set1 in controlling chromatin structure and gene expression. This report presents the first genome-wide chromatin profiling of histone modifications associated with the C. albicans genome. These epigenomic maps provide an invaluable resource to understand the contribution of chromatin to C. albicans biology and identify aspects of C. albicans chromatin organization that differ from that of other yeasts. IMPORTANCE The fungus Candida albicans is an opportunistic pathogen that normally lives on the human body without causing any harm. However, C. albicans is also a dangerous pathogen responsible for millions of infections annually. C. albicans is such a successful pathogen because it can adapt to and thrive in different environments. Chemical modifications of chromatin, the structure that packages DNA into cells, can allow environmental adaptation by regulating gene expression and genome organization. Surprisingly, the contribution of chromatin modification to C. albicans biology is still largely unknown. For the first time, we analyzed C. albicans chromatin modifications on a genome-wide basis. We demonstrate that specific chromatin states are associated with distinct regions of the C. albicans genome and identify the roles of the chromatin modifiers Sir2 and Set1 in shaping C. albicans chromatin and gene expression.


Sign in / Sign up

Export Citation Format

Share Document