scholarly journals Why Are Viruses Spiked?

mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chongyang Shen ◽  
Scott A. Bradford

ABSTRACT Many viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV), have a structure consisting of spikes protruding from an underlying spherical surface. Research in biological and colloidal sciences has revealed secrets of why spikes exist on virus surfaces. Specifically, the spikes favor virus attachment on surfaces via receptor-specific interactions (RSIs), mediate the membrane fusion, and determine or change viral tropism. The spikes also facilitate viruses to approach surfaces before attachment and subsequently escape back to the environment if RSIs do not occur (i.e., easy come and easy go). Therefore, virus spikes create the paradox of having a large capacity for binding with cells (high infectivity) and meanwhile great mobility in the environment. Such structure-function relationships have important implications for the fabrication of virus-like particles and analogous colloids (e.g., hedgehog- and raspberry-like particles) for applications such as the development of antiviral vaccines and drug delivery.

2002 ◽  
Vol 76 (22) ◽  
pp. 11584-11595 ◽  
Author(s):  
Mathias Viard ◽  
Isabella Parolini ◽  
Massimo Sargiacomo ◽  
Katia Fecchi ◽  
Carlo Ramoni ◽  
...  

ABSTRACT In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl-β-cyclodextrin (MβCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1α- and macrophage inflammatory protein 1β-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MβCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.


2000 ◽  
Vol 74 (9) ◽  
pp. 4183-4191 ◽  
Author(s):  
Eun Ju Park ◽  
Miroslav K. Gorny ◽  
Susan Zolla-Pazner ◽  
Gerald V. Quinnan

ABSTRACT We have described previously genetic characterization of neutralization-resistant, high-infectivity, and neutralization-sensitive, low-infectivity mutants of human immunodeficiency virus type 1 (HIV-1) MN envelope. The distinct phenotypes of these clones are attributable to six mutations affecting functional interactions between the gp120 C4-V5 regions and the gp41 leucine zipper. In the present study we examined mechanisms responsible for the phenotypic differences between these envelopes using neutralization and immunofluorescence assays (IFA). Most monoclonal antibodies (MAbs) tested against gp120 epitopes (V3, CD4 binding site, and CD4-induced) were 20 to 100 times more efficient at neutralizing pseudovirus expressing sensitive rather than resistant envelope. By IFA cells expressing neutralization sensitive envelope bound MAbs to gp120 epitopes more, but gp41 epitopes less, than neutralization-resistant envelope. This binding difference appeared to reflect conformational change, since it did not correlate with the level of protein expression or gp120-gp41 dissociation. This conformational change was mostly attributable to one mutation, L544P, which contributes to neutralization resistance but not to infectivity enhancement. The V420I mutation, which contributes a major effect to both high infectivity and neutralization resistance, had no apparent effect on conformation. Notably, a conformation-dependent V3 neutralization epitope remained sensitive to neutralization and accessible to binding by MAbs on neutralization-resistant HIV-1 envelope. Sensitivity to sCD4 did not distinguish the clones, suggesting that the phenotypes may be related to post-CD4-binding effects. The results demonstrate that neutralization resistance can be determined by distinguishable effects of mutations, which cause changes in envelope conformation and/or function(s) related to infectivity. A conformation-dependent V3 epitope may be an important target for neutralization of resistant strains of HIV-1.


2004 ◽  
Vol 78 (20) ◽  
pp. 11405-11410 ◽  
Author(s):  
Cecile Schiffer ◽  
Charles-Henri Lecellier ◽  
Abdelkrim Mannioui ◽  
Nathalie Felix ◽  
Elisabeth Nelson ◽  
...  

ABSTRACT We report that human T cells persistently infected with primate foamy virus type 1 (PFV-1) display an increased capacity to bind human immunodeficiency virus type 1 (HIV-1), resulting in increased cell permissiveness to HIV-1 infection and enhanced cell-to-cell virus transmission. This phenomenon is independent of HIV-1 receptor, CD4, and it is not related to PFV-1 Bet protein expression. Increased virus attachment is specifically inhibited by heparin, indicating that it should be mediated by interactions with heparan sulfate glycosaminoglycans expressed on the target cells. Given that both viruses infect similar animal species, the issue of whether coinfection with primate foamy viruses interferes with the natural course of lentivirus infections in nonhuman primates should be considered.


2005 ◽  
Vol 79 (8) ◽  
pp. 5142-5152 ◽  
Author(s):  
Roberto Pascual ◽  
Miguel R. Moreno ◽  
José Villalaín

ABSTRACT The human immunodeficiency virus gp41 envelope protein mediates the entry of the virus into the target cell by promoting membrane fusion. In order to gain new insights into the viral fusion mechanism, we studied a 35-residue peptide pertaining to the loop domain of gp41, both in solution and membrane bound, by using infrared and fluorescence spectroscopy. We show here that the peptide, which has a membrane-interacting surface, binds and interacts with phospholipid model membranes and tends to aggregate in the presence of a membranous medium and induce the leakage of vesicle contents. The results reported in this work, i.e., the destabilization and fusion of negatively charged model membranes, suggest an essential role of the loop domain in the membrane fusion process induced by gp41.


2003 ◽  
Vol 77 (12) ◽  
pp. 6645-6659 ◽  
Author(s):  
Jason A. LaBonte ◽  
Navid Madani ◽  
Joseph Sodroski

ABSTRACT T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4+ CXCR4+ T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5+ target cells. As is the case for CXCR4+ target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4+ CCR5+ cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4+ T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4+ T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.


1990 ◽  
Vol 172 (4) ◽  
pp. 1233-1242 ◽  
Author(s):  
D Healey ◽  
L Dianda ◽  
J P Moore ◽  
J S McDougal ◽  
M J Moore ◽  
...  

Human immunodeficiency virus (HIV) binds to cells via an interaction between CD4 and the virus envelope glycoprotein, gp120. Previous studies have localized the high affinity binding site for gp120 to the first domain of CD4, and monoclonal antibodies (mAbs) reactive with this region compete with gp120 binding and thereby block virus infectivity and syncytium formation. Despite a detailed understanding of the binding of gp120 to CD4, little is known of subsequent events leading to membrane fusion and virus entry. We describe two new mAbs reactive with the third domain of CD4 that inhibit steps subsequent to virus binding critical for HIV infectivity and cell fusion. Binding of recombinant gp120 or virus to CD4 is not inhibited by these antibodies, whereas infection and syncytium formation by a number of HIV isolates are blocked. These findings demonstrate that in addition to virus binding, CD4 may have an active role in membrane fusion.


Sign in / Sign up

Export Citation Format

Share Document