scholarly journals Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi

mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Jens Christian Nielsen ◽  
Sylvain Prigent ◽  
Sietske Grijseels ◽  
Mhairi Workman ◽  
Boyang Ji ◽  
...  

ABSTRACTFilamentous fungi possess great potential as sources of medicinal bioactive compounds, such as antibiotics, but efficient production is hampered by a limited understanding of how their metabolism is regulated. We investigated the metabolism of six secondary metabolite-producing fungi of thePenicilliumgenus during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. A coexpression analysis revealed that expression of biosynthetic genes correlates with expression of genes associated with pathways responsible for the generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for the supply of precursors for secondary metabolism and suggest that the regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying fungal species that are optimized for the production of specific secondary metabolites and in designing metabolic engineering strategies to develop high-yielding fungal cell factories for production of secondary metabolites.IMPORTANCESecondary metabolites are a major source of pharmaceuticals, especially antibiotics. However, the development of efficient processes of production of secondary metabolites has proved troublesome due to a limited understanding of the metabolic regulations governing secondary metabolism. By analyzing the conservation in gene expression across secondary metabolite-producing fungal species, we identified a metabolic signature that links primary and secondary metabolism and that demonstrates that fungal metabolism is tailored for the efficient production of secondary metabolites. The insight that we provide can be used to develop high-yielding fungal cell factories that are optimized for the production of specific secondary metabolites of pharmaceutical interest.


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 481-497 ◽  
Author(s):  
Jacob L. Steenwyk ◽  
Matthew E. Mead ◽  
Sonja L. Knowles ◽  
Huzefa A. Raja ◽  
Christopher D. Roberts ◽  
...  

Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the genetic determinants of virulence (or “cards of virulence”) that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.



2015 ◽  
Vol 14 (10) ◽  
pp. 983-997 ◽  
Author(s):  
J. W. Cary ◽  
Z. Han ◽  
Y. Yin ◽  
J. M. Lohmar ◽  
S. Shantappa ◽  
...  

ABSTRACTThe global regulatoryveAgene governs development and secondary metabolism in numerous fungal species, includingAspergillus flavus. This is especially relevant sinceA. flavusinfects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins areveAdependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of theA. flavusgenome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show thatveAis necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence ofveA. One of the clusters under the influence ofveAis cluster 39. The absence ofveAresults in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin.





1995 ◽  
Vol 73 (S1) ◽  
pp. 917-924 ◽  
Author(s):  
J. W. Bennett

Secondary metabolites constitute a huge array of low molecular weight natural products that cannot be easily defined. Largely produced by bacteria, fungi, and green plants, they tend to be synthesized after active growth has ceased, in families of similar compounds, often at the same time as species-specific morphological characters become apparent. Although, in many cases, the function that the secondary metabolite performs in the producing organism is unknown, the bioactivity of these compounds has been exploited since prehistoric times as drugs, poisons, food flavoring agents, and so forth. In fungi, the polyketide family is the largest known group of secondary metabolite compounds. Polyketides are synthesized from acetate by a mechanism analogous to fatty acid biosynthesis but involving changes in oxidation level and stereochemistry during the chain-elongation process. The fungal polyketide biosynthetic pathways for aflatoxin and patulin have emerged as model systems. The use of blocked mutants has been an essential part of the research approach for both pathways. Molecular methods of studying fungal secondary metabolites were first used with penicillin and cephalosporin, both of which are amino acid derived. Most of the basic molecular work on polyketides was done with streptomycete-derived compounds; however, enough fungal data are now available to compare fungal and streptomycete polyketide synthases, as well as to map the genes involved in a number of polyketide pathways from both groups. The traditional dogma, derived from classical genetics, that genes for fungal pathways are unlinked, has been overturned. In addition, cloning of structural genes facilitates the formation of hybrid molecules, and we are on the brink of understanding certain regulatory functions. Key words: fungal metabolism, secondary metabolism, polyketide, β-lactam, product discovery.



2021 ◽  
Vol 12 ◽  
Author(s):  
Chunmiao Jiang ◽  
Gongbo Lv ◽  
Yayi Tu ◽  
Xiaojie Cheng ◽  
Yitian Duan ◽  
...  

Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.



Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Claudia Gutiérrez-García ◽  
Shiek S. S. J. Ahmed ◽  
Sathishkumar Ramalingam ◽  
Dhivya Selvaraj ◽  
Aashish Srivastava ◽  
...  

MicroRNAs (miRNAs) are small noncoding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling. However, information about their involvement in secondary metabolism is still limited. Murraya koenigii is a popular medicinal plant, better known as curry leaves, that possesses pharmaceutically active secondary metabolites. The present study utilized high-throughput sequencing technology to investigate the miRNA profile of M. koenigii and their association with secondary metabolite biosynthesis. A total of 343,505 unique reads with lengths ranging from 16 to 40 nt were obtained from the sequencing data, among which 142 miRNAs were identified as conserved and 7 as novel miRNAs. Moreover, 6078 corresponding potential target genes of M. koenigii miRNAs were recognized in this study. Interestingly, several conserved and novel miRNAs of M. koenigii were found to target key enzymes of the terpenoid backbone and the flavonoid biosynthesis pathways. Furthermore, to validate the sequencing results, the relative expression of eight randomly selected miRNAs was determined by qPCR. To the best of our knowledge, this is the first report of the M. koenigii miRNA profile that may provide useful information for further elucidation of the involvement of miRNAs in secondary metabolism. These findings might be crucial in the future to generate artificial-miRNA-based, genetically engineered M. koenigii plants for the overproduction of medicinally highly valuable secondary metabolites.



2013 ◽  
Vol 79 (24) ◽  
pp. 7719-7734 ◽  
Author(s):  
L. Studt ◽  
F. J. Schmidt ◽  
L. Jahn ◽  
C. M. K. Sieber ◽  
L. R. Connolly ◽  
...  

ABSTRACTHistone modifications are crucial for the regulation of secondary metabolism in various filamentous fungi. Here we studied the involvement of histone deacetylases (HDACs) in secondary metabolism in the phytopathogenic fungusFusarium fujikuroi, a known producer of several secondary metabolites, including phytohormones, pigments, and mycotoxins. Deletion of three Zn2+-dependent HDAC-encoding genes,ffhda1,ffhda2, andffhda4, indicated that FfHda1 and FfHda2 regulate secondary metabolism, whereas FfHda4 is involved in developmental processes but is dispensable for secondary-metabolite production inF. fujikuroi. Single deletions offfhda1andffhda2resulted not only in an increase or decrease but also in derepression of metabolite biosynthesis under normally repressing conditions. Moreover, double deletion of both theffhda1andffhda2genes showed additive but also distinct phenotypes with regard to secondary-metabolite biosynthesis, and both genes are required for gibberellic acid (GA)-induced bakanae disease on the preferred host plant rice, as Δffhda1Δffhda2mutants resemble the uninfected control plant. Microarray analysis with a Δffhda1mutant that has lost the major HDAC revealed differential expression of secondary-metabolite gene clusters, which was subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are involved not only in gene silencing but also in the activation of some genes. Chromatin immunoprecipitation with the Δffhda1mutant revealed significant alterations in the acetylation state of secondary-metabolite gene clusters compared to the wild type, thereby providing insights into the regulatory mechanism at the chromatin level. Altogether, manipulation of HDAC-encoding genes constitutes a powerful tool to control secondary metabolism in filamentous fungi.



1998 ◽  
Vol 64 (10) ◽  
pp. 3707-3712 ◽  
Author(s):  
Timothy G. Schimmel ◽  
Allen D. Coffman ◽  
Sarah J. Parsons

ABSTRACT Butyrolactone I [α-oxo-β-(p-hydroxyphenyl)-γ-(p-hydroxy-m-3,3-dimethylallyl-benzyl)-γ-methoxycarbonyl-γ-butyrolactone] is produced as a secondary metabolite by Aspergillus terreus. Because small butyrolactone-containing molecules act as self-regulating factors in some bacteria, the effects of butyrolactone I on the producing organism were studied; specifically, changes in morphology, sporulation, and secondary metabolism were studied. Threefold or greater increases in hyphal branching (with concomitant decreases in the average hyphal growth unit), submerged sporulation, and secondary metabolism were observed when butyrolactone I was added to cultures of A. terreus. Among the secondary metabolites whose production was increased by this treatment was the therapeutically important compound lovastatin. These findings indicate that butyrolactone I induces morphological and sporulation changes inA. terreus and enhances secondary metabolite production in a manner similar to that previously reported for filamentous bacteria.



mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Pallabi Saha ◽  
Suvranil Ghosh ◽  
Subhankar Roy-Barman

ABSTRACT Fungi are rich sources of secondary metabolites of pharmaceutical importance, such as antibiotics, antitumor agents, and immunosuppressants, as well as of harmful toxins. Secondary metabolites play important roles in the development and pathogenesis of fungi. LaeA is a global regulator of secondary metabolism and was originally reported in Aspergillus nidulans; however, its role in secondary metabolism in Magnaporthe oryzae has not yet been reported. Here, we investigated the role of a gene homologous to LAEA (loss of AflR expression) of Aspergillus spp. in Magnaporthe oryzae, named M. oryzae LAEA (MoLAEA). Studies on MoLAEA overexpression and knockdown strains have suggested that this gene acts as a negative regulator of sporulation and melanin synthesis. However, it is not involved in the growth and pathogenesis of M. oryzae. Transcriptomic data indicated that MoLAEA regulated genes involved in secondary metabolism. Interestingly, we observed (for the first time, to our knowledge) that this gene is involved in benzylpenicillin (penicillin G) synthesis in M. oryzae. Overexpression of MoLAEA increased penicillin G production, whereas the silenced strain showed a complete absence of penicillin G compared to its presence in the wild type. We also observed that MoLaeA interacted with MoVeA, a velvet family protein involved in fungal development and secondary metabolism, in the nucleus. This study showed that though MoLAEA may not make any contribution in rice blast fungal pathogenesis, it regulates secondary metabolism in M. oryzae and thus can be further studied for identifying other new uncharacterized metabolites in this fungus. IMPORTANCE M. oryzae causes blast disease, the most serious disease of cultivated rice affecting global rice production. The genome of M. oryzae has been shown to have a number of genes involved in secondary metabolism, but most of them are uncharacterized. In fact, compared to studies of other filamentous fungi, hardly any work has been done on secondary metabolism in M. oryzae. It is shown here (for the first time, to our knowledge) that penicillin G is being synthesized in M. oryzae and that MoLAEA is involved in this process. This is the first step in understanding the penicillin G biosynthesis pathway in M. oryzae. This study also unraveled the details of how MoLaeA works by forming a nuclear complex with MoVeA in M. oryzae, thus indicating functional conservation of such a gene across filamentous fungi. All these findings open up avenues for more relevant investigations on the genetic regulation of secondary metabolism in M. oryzae.



2021 ◽  
Vol 12 ◽  
Author(s):  
Thomas E. Witte ◽  
Nicolas Villeneuve ◽  
Christopher N. Boddy ◽  
David P. Overy

Accessory chromosomes are strain- or pathotype-specific chromosomes that exist in addition to the core chromosomes of a species and are generally not considered essential to the survival of the organism. Among pathogenic fungal species, accessory chromosomes harbor pathogenicity or virulence factor genes, several of which are known to encode for secondary metabolites that are involved in plant tissue invasion. Accessory chromosomes are of particular interest due to their capacity for horizontal transfer between strains and their dynamic “crosstalk” with core chromosomes. This review focuses exclusively on secondary metabolism (including mycotoxin biosynthesis) associated with accessory chromosomes in filamentous fungi and the role accessory chromosomes play in the evolution of secondary metabolite gene clusters. Untargeted metabolomics profiling in conjunction with genome sequencing provides an effective means of linking secondary metabolite products with their respective biosynthetic gene clusters that reside on accessory chromosomes. While the majority of literature describing accessory chromosome-associated toxin biosynthesis comes from studies ofAlternariapathotypes, the recent discovery of accessory chromosome-associated biosynthetic genes inFusariumspecies offer fresh insights into the evolution of biosynthetic enzymes such as non-ribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and regulatory mechanisms governing their expression.



Sign in / Sign up

Export Citation Format

Share Document