scholarly journals Black Queen Evolution and Trophic Interactions Determine Plasmid Survival after the Disruption of the Conjugation Network

mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Johannes Cairns ◽  
Katariina Koskinen ◽  
Reetta Penttinen ◽  
Tommi Patinen ◽  
Anna Hartikainen ◽  
...  

ABSTRACTMobile genetic elements such as conjugative plasmids are responsible for antibiotic resistance phenotypes in many bacterial pathogens. The ability to conjugate, the presence of antibiotics, and ecological interactions all have a notable role in the persistence of plasmids in bacterial populations. Here, we set out to investigate the contribution of these factors when the conjugation network was disturbed by a plasmid-dependent bacteriophage. Phage alone effectively caused the population to lose plasmids, thus rendering them susceptible to antibiotics. Leakiness of the antibiotic resistance mechanism allowing Black Queen evolution (i.e. a “race to the bottom”) was a more significant factor than the antibiotic concentration (lethal vs sublethal) in determining plasmid prevalence. Interestingly, plasmid loss was also prevented by protozoan predation. These results show that outcomes of attempts to resensitize bacterial communities by disrupting the conjugation network are highly dependent on ecological factors and resistance mechanisms.IMPORTANCEBacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrade antibiotics, resistance is maintained by only a fraction of the community. On the other hand, when bacteria cannot help others, then all bacteria remain resistant. The concentration of the antibiotic played a less notable role than the antibiotic used. This report shows that the survival of antibiotic resistance in bacterial communities represents a complex process where many factors present in real-life systems define whether or not resistance is actually lost.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1461
Author(s):  
Hao Fang ◽  
Nan Ye ◽  
Kailong Huang ◽  
Junnan Yu ◽  
Shuai Zhang

Shrimp aquaculture environments are a natural reservoir of multiple antibiotic resistance genes (ARGs) due to the overuse of antibiotics. Nowadays, the prevalence of these kinds of emerging contaminants in shrimp aquaculture environments is still unclear. In this study, high-throughput sequencing techniques were used to analyze the distribution of ARGs and mobile genetic elements (MGEs), bacterial communities, and their correlations in water and sediment samples in two types of typical shrimp (Procambarus clarkii and Macrobrachium rosenbergii) freshwater aquaculture environments. A total of 318 ARG subtypes within 19 ARG types were detected in all the samples. The biodiversity and relative abundance of ARGs in sediment samples showed much higher levels compared to water samples from all ponds in the study area. Bacitracin (17.44–82.82%) and multidrug (8.57–49.70%) were dominant ARG types in P. clarkii ponds, while sulfonamide (26.33–39.59%) and bacitracin (12.75–37.11%) were dominant ARG types in M. rosenbergii ponds. Network analysis underlined the complex co-occurrence patterns between bacterial communities and ARGs. Proteobacteria, Cyanobacteria, and Actinobacteria exhibited a high abundance in all samples, in which C39 (OTU25355) and Hydrogenophaga (OTU162961) played important roles in the dissemination of and variation in ARGs based on their strong connections between ARGs and bacterial communities. Furthermore, pathogens (e.g., Aeromonadaceae (OTU195200) and Microbacteriaceae (OTU16033)), which were potential hosts for various ARGs, may accelerate the propagation of ARGs and be harmful to human health via horizontal gene transfer mediated by MGEs. Variation partitioning analysis further confirmed that MGEs were the most crucial contributor (74.76%) driving the resistome alteration. This study may help us to understand the non-ignorable correlations among ARGs, bacterial diversity, and MGEs in the shrimp freshwater aquaculture environments.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e01234-20
Author(s):  
Kaichao Chen ◽  
Chen Yang ◽  
Ning Dong ◽  
Miaomiao Xie ◽  
Lianwei Ye ◽  
...  

ABSTRACTThe incidence of ciprofloxacin resistance in Salmonella has increased dramatically in the past decade. To track the evolutionary trend of ciprofloxacin resistance-encoding genetic elements during this period, we surveyed the prevalence of Salmonella in food products in Shenzhen, China, during the period of 2012 to 2017 and performed whole-genome sequencing and genetic analysis of 566 ciprofloxacin-resistant clinical Salmonella strains collected during this survey. We observed that target gene mutations have become much less common, with single gyrA mutation currently detectable in Salmonella enterica serovar Typhimurium only. Multiple plasmid-mediated quinolone resistance (PMQR) genes located in the chromosome and plasmids are now frequently detectable in ciprofloxacin-resistant Salmonella strains of various serotypes. Among them, the qnrS1 gene was often harbored by multiple plasmids, with p10k-like plasmids being the most dominant. Importantly, p10k-like plasmids initially were not conjugative but became transmissible with the help of a helper plasmid. Ciprofloxacin resistance due to combined effect of carriage of the qnrS1 gene and other resistance mechanisms is common. In S. Typhimurium, carriage of qnrS1 is often associated with a single gyrA mutation; in other serotypes, combination of qnrS1 and other PMQR genes located in the chromosomal fragment or plasmid is observed. Another major mechanism of ciprofloxacin resistance, mainly observable in S. Derby, involves a chromosomal fragment harboring the qnrS2–aac(6′)lb-cr–oqxAB elements. Intriguingly, this chromosomal fragment, flanked by IS26, could form a circular intermediate and became transferrable. To conclude, the increase in the incidence of various PMQR mobile genetic elements and their interactions with other resistance mechanism contribute to a sharp increase in the prevalence of ciprofloxacin-resistant clinical Salmonella strains in recent years.IMPORTANCE Resistance of nontyphoidal Salmonella to fluoroquinolones such as ciprofloxacin is known to be mediated by target mutations. This study surveyed the prevalence of Salmonella strains recovered from 2,989 food products in Shenzhen, China, during the period 2012 to 2017 and characterized the genetic features of several PMQR gene-bearing plasmids and ciprofloxacin resistance-encoding DNA fragments. The emergence of such genetic elements has caused a shift in the genetic location of ciprofloxacin resistance determinants from the chromosomal mutations to various mobile genetic elements. The distribution of these PMQR plasmids showed that they exhibited high serotype specificity, except for the p10k-like plasmids, which can be widely detected and efficiently transmitted among Salmonella strains of various serotypes by fusing to a new conjugative helper plasmid. The sharp increase in the prevalence of ciprofloxacin resistance in recent years may cause a predisposition to the emergence of multidrug-resistant Salmonella strains and pose huge challenges to public health and infection control efforts.


2018 ◽  
Vol 621 ◽  
pp. 725-733 ◽  
Author(s):  
Carlos Garbisu ◽  
Olatz Garaiyurrebaso ◽  
Anders Lanzén ◽  
Itxaso Álvarez-Rodríguez ◽  
Lide Arana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document