scholarly journals Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia

mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Feargal J. Ryan ◽  
Damian P. Drew ◽  
Chloe Douglas ◽  
Lex E. X. Leong ◽  
Max Moldovan ◽  
...  

ABSTRACT Bronchopulmonary dysplasia (BPD) is a common chronic lung condition in preterm infants that results in abnormal lung development and leads to considerable morbidity and mortality, making BPD one of the most common complications of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to profile gene expression in blood and the composition of the fecal microbiota in infants born at <29 weeks gestational age and diagnosed with BPD in comparison to those of preterm infants that were not diagnosed with BPD. 16S rRNA gene sequencing, performed longitudinally on 255 fecal samples collected from 50 infants in the first months of life, identified significant differences in the relative levels of abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the BPD infants in a manner that was birth mode dependent. Transcriptome sequencing (RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants with BPD. Genes upregulated in BPD infants were significantly enriched for functions related to red blood cell development and oxygen transport, while several immune-related pathways were downregulated. We also identified a gene expression signature consistent with an enrichment of immunosuppressive CD71+ early erythroid cells in infants with BPD. Intriguingly, genes that were correlated in their expression with the relative abundances of specific taxa in the microbiota were significantly enriched for roles in the immune system, suggesting that changes in the microbiota might influence immune gene expression systemically. IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condition of the lung and is the most common complication associated with preterm birth. A large body of evidence now suggests that the gut microbiota can influence immunity and inflammation systemically; however, the role of the gut microbiota in BPD has not been evaluated to date. Here, we report that there are significant differences in the gut microbiota of infants born at <29 weeks gestation and subsequently diagnosed with BPD, which are particularly pronounced when infants are stratified by birth mode. We also show that erythroid and immune gene expression levels are significantly altered in BPD infants. Interestingly, we identified an association between the composition of the microbiota and immune gene expression in blood in early life. Together, these findings suggest that the composition of the microbiota may influence the risk of developing BPD and, more generally, may shape systemic immune gene expression.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Durazzi ◽  
Claudia Sala ◽  
Gastone Castellani ◽  
Gerardo Manfreda ◽  
Daniel Remondini ◽  
...  

AbstractIn this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.


2021 ◽  
Author(s):  
Pei-Qin Cao ◽  
Xiu-Ping Li ◽  
Jian Ou-Yang ◽  
Rong-Gang Jiang ◽  
Fang-Fang Huang ◽  
...  

We evaluated the effects of yellow tea extract on relieving constipation induced by loperamide and evaluated the changes of gut microbiota based on 16S rRNA gene sequencing.


Urolithiasis ◽  
2018 ◽  
Vol 46 (6) ◽  
pp. 503-514 ◽  
Author(s):  
Ruiqiang Tang ◽  
Yonghua Jiang ◽  
Aihua Tan ◽  
Juan Ye ◽  
Xiaoying Xian ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2125
Author(s):  
Limin Wei ◽  
Bo Zeng ◽  
Siyuan Zhang ◽  
Feng Li ◽  
Fanli Kong ◽  
...  

The gut microbiota coevolve with the host and can be stably transmitted to the offspring. Host genetics plays a crucial role in the composition and abundance of gut microbiota. Inbreeding can cause a decrease of the host’s genetic diversity and the heterozygosity. In this study, we used 16S rRNA gene sequencing to compare the differences of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to understand the impact of inbreeding on the gut microbiota. Three dominant bacteria (Stenotrophlomonas, Streptococcus, and Lactobacillus) were steadily enriched in both the Diannan small-ear pig and Banna minipig inbred. After inbreeding, the gut microbiota alpha diversity and some potential probiotics (Bifidobacterium, Tricibacter, Ruminocaccae, Christensenellaceae, etc.) were significantly decreased, while the pathogenic Klebsiella bacteria was significantly increased. In addition, the predicted metagenomic analysis (PICRUSt2) indicated that several amino acid metabolisms (‘‘Valine, leucine, and isoleucine metabolism’’, ‘‘Phenylalanine, tyrosine, and tryptophan biosynthesis’’, ‘‘Histidine metabolism’’) were also markedly decreased after the inbreeding. Altogether our data reveal that host inbreeding altered the composition and the predicted function of the gut microbiome, which provides some data for the gut microbiota during inbreeding.


2017 ◽  
Vol 63 (11) ◽  
pp. 1685-1694 ◽  
Author(s):  
Andrew Y Koh

Abstract BACKGROUND Gut microbiota, the collective community of microorganisms inhabiting the intestine, have been shown to provide many beneficial functions for the host. Recent advances in next-generation sequencing and advanced molecular biology approaches have allowed researchers to identify gut microbiota signatures associated with disease processes and, in some cases, establish causality and elucidate underlying mechanisms. CONTENT This report reviews 3 commonly used methods for studying the gut microbiota and microbiome (the collective genomes of the gut microorganisms): 16S rRNA gene sequencing, bacterial group or species-specific quantitative polymerase chain reaction (qPCR), and metagenomic shotgun sequencing (MSS). The technical approaches and resources needed for each approach are outlined, and advantages and disadvantages for each approach are summarized. The findings regarding the role of the gut microbiota in the health of patients with cancer and stem cell transplant (SCT) patients (specifically in modulating the development of gut-derived bacterial infections and a posttransplant immune-mediated complication known as graft-vs-host-disease) are reviewed. Finally, there is discussion of the potential viability of these approaches in the actual clinical treatment of cancer and SCT patients. SUMMARY Advances in next-generation sequencing have revolutionized our understanding of the importance of the gut microbiome to human health. Both 16S rRNA gene sequencing and MSS are currently too labor-intensive or computationally burdensome to incorporate into real-time clinical monitoring of gut microbiomes. Yet, the lessons learned from these technologies could be adapted to currently used methods (e.g., qPCR) that could then be rigorously tested in the clinical care of these patients.


Sign in / Sign up

Export Citation Format

Share Document