Evaluation of a discrete-depth heat dissipation test for thermal characterization of the subsurface

Author(s):  
Stephen M. Sellwood ◽  
Jean M. Bahr ◽  
David J. Hart
2018 ◽  
Vol 15 (3) ◽  
pp. 117-125 ◽  
Author(s):  
Bharath R. Bharadwaj ◽  
SriNithish Kandagadla ◽  
Praveen J. Nadkarni ◽  
V. Krishna ◽  
T. R. Seetharam ◽  
...  

Abstract The need for compactness and efficiency of processing devices has kept increasing rapidly over the past few years. This need for compactness has driven the dice to be stacked one above the other. But with this come the difficulty of heat dissipation and its characterization because there are multiple heat sources and a single effective heat-conductive path. Hence, it becomes important to know the distribution and characterization of heat and temperature to provide effective cooling systems. In this article, we discuss the temperature distribution of various power configurations on stacked dice with five dice, when the dice are in staggered arrangement. The simulations have been carried out for both free convection and forced convection conditions using the ANSYS commercial software. The linear Superposition principle (LSP) is demonstrated on these configurations and validated with the results obtained from ANSYS simulation. LSP can be applied for the quick estimation of die temperatures with negligible error.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012121
Author(s):  
Mohammad Azarifar ◽  
Ceren Cengiz ◽  
Mehmet Arik

Abstract Optical and thermal control are two main factors in package design process of lighting products, specifically light emitting diodes (LEDs). This research is aimed to study the role of secondary optics in opto-thermal characterization of LED packages. Novel thin total internal reflection (TIR) multifaceted reflector (MR) lens is modelled and optimized in Monte-Carlo ray-tracing simulations for MR16 package, regarded as one of the widely used LED lighting products. With criteria of designing an optical lens with 50% reduced thickness in comparison to commercially available lenses utilized in MR16 packages, nearly same light extraction efficiency and more uniform beam angles are achieved. Optical performance of the new lens is compared with the experimental results of the MR16 lamp with conventional lens. Only 2.3% reduction in maximum light intensity is obtained while lens size reduction was more than 25%. Based on the detailed CAD design, heat transfer simulations are performed comparing the lens thickness effect on heat dissipation of MR16 lamp. It was observed that using thinner lenses can reduce the lens and chip temperature, which can result in improved light quality and lifetime of both lens and light source.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 175
Author(s):  
Alexandros El Sachat ◽  
Francesc Alzina ◽  
Clivia M. Sotomayor Torres ◽  
Emigdio Chavez-Angel

Heat dissipation and thermal management are central challenges in various areas of science and technology and are critical issues for the majority of nanoelectronic devices. In this review, we focus on experimental advances in thermal characterization and phonon engineering that have drastically increased the understanding of heat transport and demonstrated efficient ways to control heat propagation in nanomaterials. We summarize the latest device-relevant methodologies of phonon engineering in semiconductor nanostructures and 2D materials, including graphene and transition metal dichalcogenides. Then, we review recent advances in thermal characterization techniques, and discuss their main challenges and limitations.


2005 ◽  
Vol 430 (1-2) ◽  
pp. 155-165 ◽  
Author(s):  
L.C. Sim ◽  
S.R. Ramanan ◽  
H. Ismail ◽  
K.N. Seetharamu ◽  
T.J. Goh

1999 ◽  
Vol 6 (1) ◽  
pp. 101-108 ◽  
Author(s):  
E. Delacre ◽  
D. Defer ◽  
E. Antczak ◽  
B. Duthoit

2005 ◽  
Vol 125 ◽  
pp. 177-180
Author(s):  
T. Lopez ◽  
M. Picquart ◽  
G. Aguirre ◽  
Y. Freile ◽  
D. H. Aguilar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document