A comparison of western Great Basin paleoclimate records for the last 3000 yr: Evidence for multidecadal- to millennial-scale drought

2021 ◽  
pp. 183-199
Author(s):  
Steve P. Lund ◽  
Larry V. Benson

ABSTRACT This paper summarizes the hydrological variability in eastern California (central Sierra Nevada) for the past 3000 yr based on three distinct paleoclimate proxies, δ18O, total inorganic carbon (TIC), and magnetic susceptibility (chi). These proxies, which are recorded in lake sediments of Pyramid Lake and Walker Lake, Nevada, and Mono Lake and Owens Lake, California, indicate lake-level changes that are mostly due to variations in Sierra Nevada snowpack and rainfall. We evaluated lake-level changes in the four Great Basin lake systems with regard to sediment-core locations and lake-basin morphologies, to the extent that these two factors influence the paleoclimate proxy records. We documented the strengths and weaknesses of each proxy and argue that a systematic study of all three proxies together significantly enhances our ability to characterize the regional pattern, chronology, and resolution of hydrological variability. We used paleomagnetic secular variation (PSV) to develop paleomagnetic chronostratigraphies for all four lakes. We previously published PSV records for three of the lakes (Mono, Owens, Pyramid) and developed a new PSV record herein for Walker Lake. We show that our PSV chronostratigraphies are almost identical to previously established radiocarbon-based chronologies, but that there are differences of 20–200 yr in individual age records. In addition, we used eight of the PSV inclination features to provide isochrons that permit exacting correlations between lake records. We also evaluated the temporal resolution of our proxies. Most can document decadal-scale variability over the past 1000 yr, multidecadal-scale variability for the past 2000 yr, and centennial-scale variability between 2000 and 3000 yr ago. Comparisons among our proxies show a strong coherence in the pattern of lake-level variability for all four lakes. Pyramid Lake and Walker Lake have the longest and highest-resolution records. The δ18O and TIC records yield the same pattern of lake-level variability; however, TIC may allow a somewhat higher-frequency resolution. It is not clear, however, which proxy best estimates the absolute amplitude of lake-level variability. Chi is the only available proxy that records lake-level variability in all four lakes prior to 2000 yr ago, and it shows consistent evidence of a large multicentennial period of drought. TIC, chi, and δ18O are integrative proxies in that they display the cumulative record of hydrologic variability in each lake basin. Tree-ring estimations of hydrological variability, by contrast, are incremental proxies that estimate annual variability. We compared our integrated proxies with tree-ring incremental proxies and found a strong correspondence among the two groups of proxies if the tree-ring proxies are smoothed to decadal or multidecadal averages. Together, these results indicate a common pattern of wet/dry variability in California (Sierra Nevada snowpack/rainfall) extending from a few years (notable only in the tree-ring data) to perhaps 1000 yr. Notable hydrologic variability has occurred at all time scales and should continue into the future.

1996 ◽  
Vol 45 (3) ◽  
pp. 271-281 ◽  
Author(s):  
Barney J. Szabo ◽  
Charles A. Bush ◽  
Larry V. Benson

AbstractUranium-series dating of dense tufa deposited in a small cave, at former lake margins, and in large tufa mounds clarifies the timing of lake-level variation during the past 400,000 yr in the Pyramid Lake basin. A moderate-sized lake occasionally overflowed the Emerson Pass sill at elevation of ∼1207 m between ca. 400,000 and 170,000 and from ca. 60,000 to 20,000 yr B.P., as shown by 230Th/234U ages of the cave samples, 230Th-excess ages of tubular tufas, and average isochron-plot ages of shoreline-deposited tufas. (By comparison, modern Pyramid Lake is ∼50 m below this sill). There is a lack of tufa record during the intervening period from ca. 170,000 to 60,000 yr B.P. After ca. 20,000 yr, Pyramid Lake underwent abrupt changes in level and, based on previous 14C ages, reached its highest elevation (ca 1335 m) at ca. 14,000 yr B.P. The youngest uranium-series ages are comparable with previously reported 14C ages.


1987 ◽  
Vol 28 (1) ◽  
pp. 69-85 ◽  
Author(s):  
L. V. Benson ◽  
R. S. Thompson

AbstractSelected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ≧100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet.


2004 ◽  
Vol 62 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Scott A Mensing ◽  
Larry V Benson ◽  
Michaele Kashgarian ◽  
Steve Lund

Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published δ18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin.


1980 ◽  
Vol 70 (5) ◽  
pp. 1557-1572
Author(s):  
J. D. VanWormer ◽  
Alan S. Ryall

abstract Precise epicentral determinations based on local network recordings are compared with mapped faults and volcanic features in the western Great Basin. This region is structurally and seismically complex, and seismogenic processes vary within it. In the area north of the rupture zone of the 1872 Owens Valley earthquake, dispersed clusters of epicenters agree with a shatter zone of faults that extend the 1872 breaks to the north and northwest. An area of frequent earthquake swarms east of Mono Lake is characterized by northeast-striking faults and a crustal low-velocity zone; seismicity in this area appears to be related to volcanic processes that produced thick Pliocene basalt flows in the Adobe Hills and minor historic activity in Mono Lake. In the Garfield Hills between Walker Lake and the Excelsior Mountains, there is some clustering of epicenters along a north-trending zone that does not correlate with major Cenozoic structures. In an area west of Walker Lake, low seismicity supports a previous suggestion by Gilbert and Reynolds (1973) that deformation in that area has been primarily by folding and not by faulting. To the north, clusters of earthquakes are observed at both ends of a 70-km-long fault zone that forms the eastern boundary of the Sierra Nevada from Markleeville to Reno. Clusters of events also appear at both ends of the Dog Valley Fault in the Sierra west of Reno, and at Virginia City to the east. Fault-plane solutions for the belt in which major earthquakes have occurred in Nevada during the historic period (from Pleasant Valley in the north to the Excelsior Mountains on the California-Nevada Border) correspond to normaloblique slip and are similar to that found by Romney (1957) for the 1954 Fairview Peak shock. However, mechanisms of recent moderate earthquakes within the SNGBZ are related to right- or left-lateral slip, respectively, on nearly vertical, northwest-, or northeast-striking planes. These mechanisms are explained by a block faulting model of the SNGBZ in which the main fault segments trend north, have normal-oblique slip, and are offset or terminated by northwest-trending strike-slip faults. This is supported by the observation that seismicity during the period of observation has been concentrated at places where major faults terminate or intersect. Anomalous temporal variations, consisting of a general decrease in seismicity in the southern part of the SNGBZ from October 1977 to September 1978, followed by a burst of moderate earthquakes that has continued for more than 18 months, is suggestive of a pattern that several authors have identified as precursory to large earthquakes. The 1977 to 1979 variations are particularly noteworthy because they occurred over the entire SNGBZ, indicating a regional rather than local cause for the observed changes.


2003 ◽  
Vol 60 (3) ◽  
pp. 294-306 ◽  
Author(s):  
Kenneth D. Adams

AbstractNew dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
秦莉 QIN Li ◽  
袁玉江 YUAN Yujiang ◽  
喻树龙 YU Shulong ◽  
范子昂 FAN Zi'ang ◽  
尚华明 SHANG Huaming ◽  
...  

1978 ◽  
Vol 9 (3) ◽  
pp. 300-318 ◽  
Author(s):  
Larry Benson

Samples of algal tufa, gastropods and calcite-cemented sand were collected from the Walker and Pyramid Lake areas of the Lahontan Basin, Nevada. X-ray diffraction petrographic and radiocarbon analyses show that massive forms of tufa such as the dendritic variety contain secondary carbon-bearing material and therefore yield unreliable radiocarbon dates. Dense coating of tufa (lithoid), however, gave radiocarbon ages in agreement with dates on coexisting aragonite gastropods. Radiocarbon data from the study were combined with previously dated noncarbonate materials [Born, S. M. (1972). “Lake Quaternary History, Deltaic Sedimentation, and Mudlump Formation at Pyramid Lake, Nevada”, Center for Water Resources, Desert Research Inst., Reno, Nevada] to give an internally consistent record of lake level fluctuations for the past 40,000 years. The main features of the Lahontan chronology are (1) extreme high stands (1330 m above sea level) 13,500 to 11,000 and 25,000 to 22,000 B.P., (2) a moderate high stand (1260 m above sea level) 20,000 to 15,000 B.P., (3) a low stand of unknown elevation 40,000 to 25,000 B.P., (4) an extremely low stand 9000 to 5000 B.P., and (5) an overall increase in the size of Walker and Pyramid Lakes during the past 5000 years, until the late 19th century. Pore fluid data indicate that Walker Lake desiccated sometime during the period 9050 to 6400 B.P. Salts deposited as a result of this dessication are still undergoing dissolution causing a flux of chloride, carbon, and other solute species from the sediments to the overlying lake water. Pore fluid data obtained from Pyramid Lake sediments do not indicate the presence of a concentrated brine at depth. This suggests that Pyramid Lake did not dry completely during this period although it may have been severely reduced in size. There has been considerable disagreement regarding the occurrence of extreme arid conditions (altithermal period) since 10,000 B.P. [Mehringer, P. J. (1977). “Models and Great Basin Prehistory”. Desert Research Inst. Pub, Reno, Nevada]. The data of this study suggest that such a climatic regime did occur in the western Great Basin during the period 9000 to 5000 B.P.


2003 ◽  
Vol 59 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Larry Benson ◽  
Braddock Linsley ◽  
Joe Smoot ◽  
Scott Mensing ◽  
Steve Lund ◽  
...  

AbstractMono Lake sediments have recorded five major oscillations in the hydrologic balance between A.D. 1700 and 1941. These oscillations can be correlated with tree-ring-based oscillations in Sierra Nevada snowpack. Comparison of a tree-ring-based reconstruction of the Pacific Decadal Oscillation (PDO) index (D’Arrigo et al., 2001) with a coral-based reconstruction of Subtropical South Pacific sea-surface temperature (Linsley et al., 2000) indicates a high degree of correlation between the two records during the past 300 yr. This suggests that the PDO has been a pan-Pacific phenomena for at least the past few hundred years. Major oscillations in the hydrologic balance of the Sierra Nevada correspond to changes in the sign of the PDO with extreme droughts occurring during PDO maxima. Four droughts centered on A.D. 1710, 1770, 1850, and 1930 indicate PDO-related drought reoccurrence intervals ranging from 60 to 80 yr.


2004 ◽  
Vol 5 (3) ◽  
Author(s):  
Fasong Yuan ◽  
Braddock K. Linsley ◽  
Steve P. Lund ◽  
John P. McGeehin

Sign in / Sign up

Export Citation Format

Share Document