Fluctuation in the Level of Pluvial Lake Lahontan During the last 40,000 Years

1978 ◽  
Vol 9 (3) ◽  
pp. 300-318 ◽  
Author(s):  
Larry Benson

Samples of algal tufa, gastropods and calcite-cemented sand were collected from the Walker and Pyramid Lake areas of the Lahontan Basin, Nevada. X-ray diffraction petrographic and radiocarbon analyses show that massive forms of tufa such as the dendritic variety contain secondary carbon-bearing material and therefore yield unreliable radiocarbon dates. Dense coating of tufa (lithoid), however, gave radiocarbon ages in agreement with dates on coexisting aragonite gastropods. Radiocarbon data from the study were combined with previously dated noncarbonate materials [Born, S. M. (1972). “Lake Quaternary History, Deltaic Sedimentation, and Mudlump Formation at Pyramid Lake, Nevada”, Center for Water Resources, Desert Research Inst., Reno, Nevada] to give an internally consistent record of lake level fluctuations for the past 40,000 years. The main features of the Lahontan chronology are (1) extreme high stands (1330 m above sea level) 13,500 to 11,000 and 25,000 to 22,000 B.P., (2) a moderate high stand (1260 m above sea level) 20,000 to 15,000 B.P., (3) a low stand of unknown elevation 40,000 to 25,000 B.P., (4) an extremely low stand 9000 to 5000 B.P., and (5) an overall increase in the size of Walker and Pyramid Lakes during the past 5000 years, until the late 19th century. Pore fluid data indicate that Walker Lake desiccated sometime during the period 9050 to 6400 B.P. Salts deposited as a result of this dessication are still undergoing dissolution causing a flux of chloride, carbon, and other solute species from the sediments to the overlying lake water. Pore fluid data obtained from Pyramid Lake sediments do not indicate the presence of a concentrated brine at depth. This suggests that Pyramid Lake did not dry completely during this period although it may have been severely reduced in size. There has been considerable disagreement regarding the occurrence of extreme arid conditions (altithermal period) since 10,000 B.P. [Mehringer, P. J. (1977). “Models and Great Basin Prehistory”. Desert Research Inst. Pub, Reno, Nevada]. The data of this study suggest that such a climatic regime did occur in the western Great Basin during the period 9000 to 5000 B.P.

2021 ◽  
pp. 183-199
Author(s):  
Steve P. Lund ◽  
Larry V. Benson

ABSTRACT This paper summarizes the hydrological variability in eastern California (central Sierra Nevada) for the past 3000 yr based on three distinct paleoclimate proxies, δ18O, total inorganic carbon (TIC), and magnetic susceptibility (chi). These proxies, which are recorded in lake sediments of Pyramid Lake and Walker Lake, Nevada, and Mono Lake and Owens Lake, California, indicate lake-level changes that are mostly due to variations in Sierra Nevada snowpack and rainfall. We evaluated lake-level changes in the four Great Basin lake systems with regard to sediment-core locations and lake-basin morphologies, to the extent that these two factors influence the paleoclimate proxy records. We documented the strengths and weaknesses of each proxy and argue that a systematic study of all three proxies together significantly enhances our ability to characterize the regional pattern, chronology, and resolution of hydrological variability. We used paleomagnetic secular variation (PSV) to develop paleomagnetic chronostratigraphies for all four lakes. We previously published PSV records for three of the lakes (Mono, Owens, Pyramid) and developed a new PSV record herein for Walker Lake. We show that our PSV chronostratigraphies are almost identical to previously established radiocarbon-based chronologies, but that there are differences of 20–200 yr in individual age records. In addition, we used eight of the PSV inclination features to provide isochrons that permit exacting correlations between lake records. We also evaluated the temporal resolution of our proxies. Most can document decadal-scale variability over the past 1000 yr, multidecadal-scale variability for the past 2000 yr, and centennial-scale variability between 2000 and 3000 yr ago. Comparisons among our proxies show a strong coherence in the pattern of lake-level variability for all four lakes. Pyramid Lake and Walker Lake have the longest and highest-resolution records. The δ18O and TIC records yield the same pattern of lake-level variability; however, TIC may allow a somewhat higher-frequency resolution. It is not clear, however, which proxy best estimates the absolute amplitude of lake-level variability. Chi is the only available proxy that records lake-level variability in all four lakes prior to 2000 yr ago, and it shows consistent evidence of a large multicentennial period of drought. TIC, chi, and δ18O are integrative proxies in that they display the cumulative record of hydrologic variability in each lake basin. Tree-ring estimations of hydrological variability, by contrast, are incremental proxies that estimate annual variability. We compared our integrated proxies with tree-ring incremental proxies and found a strong correspondence among the two groups of proxies if the tree-ring proxies are smoothed to decadal or multidecadal averages. Together, these results indicate a common pattern of wet/dry variability in California (Sierra Nevada snowpack/rainfall) extending from a few years (notable only in the tree-ring data) to perhaps 1000 yr. Notable hydrologic variability has occurred at all time scales and should continue into the future.


2002 ◽  
Vol 97 ◽  
pp. 171-200 ◽  
Author(s):  
Simon Price ◽  
Tom Higham ◽  
Lucia Nixon ◽  
Jennifer Moody

This article is concerned with the recognition and dating of Holocene relative sea-level changes along the coast of west Crete (an island located in the active Hellenic subduction arc of the southern Aegean) and in particular in Sphakia. Radiocarbon data for changes in sea levels collected and analysed previously must (a) be recorrected to take into account isotopic fractionation, and (b) recalibrated by using the new marine reservoir value. These new radiocarbon dates are analysed using Bayesian statistics. The resulting calendar dates for changes in sea level are younger than previously assumed. In particular the Great Uplift in western Crete in late antiquity must be dated to the fifth or sixth century AD, not to AD 365. Moreover, recent work on tectonics suggests that the Great Uplift need not have been accompanied by a catastrophic earthquake. Finally, we consider the consequences of the Great Uplift for some coastal sites in Sphakia.


1987 ◽  
Vol 28 (1) ◽  
pp. 69-85 ◽  
Author(s):  
L. V. Benson ◽  
R. S. Thompson

AbstractSelected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ≧100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet.


1988 ◽  
Vol 53 (1) ◽  
pp. 118-125 ◽  
Author(s):  
Renee Kra

Radiocarbon dates are essential to the understanding of chronological frameworks in many fields, but are particularly important in archaeology. An International Radiocarbon Data Base (IRDB) has been proposed to update and maintain a computerized, centralized, and standardized record of 14C data, on a global and inter-disciplinary scale, from which researchers may retrieve and utilize valuable data. Since 1985, planning conferences and workshops continue to address the issues of establishing the IRDB. The primary focus of these discussions has been the data-entry format and how to obtain continuing financial support.


1972 ◽  
Vol 2 (4) ◽  
pp. 487-495 ◽  
Author(s):  
H.D. Tjia ◽  
Shoji Fujii ◽  
Kunihiko Kigoshi ◽  
Arata Sugimura ◽  
Thomas Zakaria

Four new radiocarbon dates of elevated strandlines in tectonically active areas of eastern Indonesia and East Malaysia indicate average rates of uplift that range between 4.5 and 9 mm annually during the past 24,000 yr. These values are at least three times higher than former estimates from eastern Indonesia. Another radiocarbon date from the south arm of Sulawesi—also tectonically mobile—indicates a rate of uplift of 1.4–2.5 mm per year which corresponds with earlier determinations. This particular case, however, suggests that the sample was probably located close to a north-south axis about which southern Sulawesi was tilted during the Quaternary.In the Langkawi islands, West Malaysia, one of the regionally ubiquitous shorelines at about 2 m above sea level was dated at 2590 ± 100 yr BP which corresponds with Fairbridge's (1961) Abrolhos Submergence.


2010 ◽  
Vol 74 (2) ◽  
pp. 265-276 ◽  
Author(s):  
M. Gabriella Carboni ◽  
Luisa Bergamin ◽  
Letizia Di Bella ◽  
Daniela Esu ◽  
Emanuela Pisegna Cerone ◽  
...  

AbstractForaminifera and molluscs from the 90 m deep ENEA borehole (Versilian plain, central Italy) were studied for paleoenvironmental purposes. Palaeontological analyses, integrated with U/Th and radiocarbon data, helped to recognize late Quaternary sea-level changes and supplied results on tectonic mobility of the area. The study highlighted four sedimentary phases. The first phase consists of a shore environment attributed to MIS 7.1. A hiatus corresponding to MIS 6 is hypothesized at the top of this interval. Recognition of the paleo-shoreline of MIS 7.1 at − 72.8 m signifies a vertical displacement due to the extensional tectonics of the Apennine orogenesis. The second phase consists of a transgressive succession with evidence of warm temperatures, which was interpreted as part of the transgression leading to the MIS 5.5 highstand. The third phase includes sub-aerial and lacustrine deposits. Radiocarbon dates and palaeoecological reconstruction led us to attribute this interval to MIS 4, MIS 3 and MIS 2. The fourth phase begins with a lagoon environment attributable to Holocene sea-level rise and ends with marsh episodes, signifying the progradation of the alluvial plain. This reconstruction confirms the hypothesis of tectonic stability for the Versilian area during the Holocene.


2004 ◽  
Vol 62 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Scott A Mensing ◽  
Larry V Benson ◽  
Michaele Kashgarian ◽  
Steve Lund

Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published δ18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 887-898 ◽  
Author(s):  
Kunio Omoto

Beach rock is a good indicator of the past sea levels, as it is considered to have been formed within the range of intertidal zone. Radiocarbon dates of beach rocks collected from Iriomote Island, Ishigaki Island, and Miyako Island, in the southern part of the Nansei Islands, indicate that the beach rocks were formed between around 4000 BP and 400 BP. Late Holocene sea-level changes were revealed based on the elevations and 14C dates of the beach rocks. The results indicate that the sea level was similar to the present one for at least the past 4000 BP. Isotopic fractionations (δ13C) of the beach rocks were between +9.40% and −0.08%, suggesting a different origin for calcium carbonate.


1997 ◽  
Vol 48 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Isaac J. Winograd ◽  
Jurate M. Landwehr ◽  
Kenneth R. Ludwig ◽  
Tyler B. Coplen ◽  
Alan C. Riggs

AbstractReanalysis and additional dating of the Devils Hole δ18O paleotemperature record confirm that the last interglaciation in the Great Basin (the continental analog of marine isotopic substage 5e) lasted ∼22,000 yr, consistent with the Vostok paleotemperature record which suggests a duration of ∼19,000 yr for this event in Antarctica. The three preceding interglaciations in the Devils Hole record (analogs of marine isotopic substages 7e, 9c, and 11c) range from 20,000 to 26,000 yr in duration. A ∼20,000-yr duration for the last interglaciation is consistent with TIMS uranium-series dated sea-level high stands. Thus, the widely held view that interglaciations were of 11,000- to 13,000-yr duration and constituted only about 10% of mid-to-late Pleistocene climatic cycles needs reexamination. The warmest portion of each interglaciation in the Devils Hole time series is marked by a δ18O plateau, signifying apparent climatic stability for periods of 10,000- to 15,000-yr duration.


Sign in / Sign up

Export Citation Format

Share Document