THE POTENTIAL OF GLACIAL LAKE AGASSIZ VARVES TO RECONSTRUCT LAURENTIDE ICE SHEET RESPONSE TO CLIMATE CHANGE: PRELIMINARY RESULTS FROM LAKE KABETOGAMA (MN) SEDIMENT CORES

2016 ◽  
Author(s):  
Andy J. Breckenridge ◽  
◽  
Amy Myrbo ◽  
Timothy Schilling ◽  
Sarah Bauer
2002 ◽  
Vol 57 (2) ◽  
pp. 244-252 ◽  
Author(s):  
David W. Leverington ◽  
Jason D. Mann ◽  
James T. Teller

AbstractComputer reconstructions of the bathymetry of the lake were used to quantify variations in the size and form of Lake Agassiz during its final two phases (the Nipigon and Ojibway phases), between about 9200 and 7700 14C yr B.P. (ca. 10,300–8400 cal yr B.P.). New bathymetric models for four Nipigon Phase stages (corresponding to the McCauleyville, Hillsboro, Burnside, and The Pas strandlines) indicate that Lake Agassiz ranged between about 19,200 and 4600 km3 in volume and 254,000 and 151,000 km2 in areal extent at those times. A bathymetric model of the last (Ponton) stage of the lake, corresponding to the period in which Lake Agassiz was combined with glacial Lake Ojbway to the east, shows that Lake Agassiz–Ojibway was about 163,000 km3 in volume and 841,000 km2 in areal extent prior to the final release of lake waters into the Tyrrell Sea. During the Nipigon Phase, a number of catastrophic releases of water from Lake Agassiz occurred as more northerly (lower) outlets were made available by the retreating southern margin of the Laurentide Ice Sheet; we estimate that each of the four newly investigated Nipigon Phase releases involved water volumes of between 1600 and 2300 km3. The final release of Lake Agassiz waters into the Tyrrell Sea at about 7700 14C yr B.P. is estimated to have been about 163,000 km3 in volume.


2003 ◽  
Vol 40 (9) ◽  
pp. 1259-1278 ◽  
Author(s):  
David W Leverington ◽  
James T Teller

Paleotopographic reconstructions of the eastern outlets of glacial Lake Agassiz provide a foundation for understanding the complex manner in which terrain morphology controlled the routing of overflow through the eastern outlets during the lake's Nipigon Phase (ca. 9400–8000 14C years BP) and for understanding the causes of outlet-driven declines in lake level during that period. Although flow paths across the divide between the Agassiz and Nipigon basins were numerous, eastward releases from Lake Agassiz to glacial Lake Kelvin (modern Lake Nipigon) were channeled downslope into a relatively small number of major channels that included the valleys of modern Kopka River, Ottertooth Creek, Vale Creek, Whitesand River, Pikitigushi River, and Little Jackfish River. From Lake Kelvin, these waters overflowed into the Superior basin. The numerous lowerings in lake level between stages of the Nipigon Phase, controlled by topography and the position of the retreating southern margin of the Laurentide Ice Sheet, had magnitudes of between 8 and 58 m, although some of these drawdowns may have occurred as multiple individual events that could have been as small as several metres. The total volumes of water released in association with these drops were as great as 8100 km3, and for all Nipigon stages were probably between about 140 and 250 km3 per metre of lowering. The topographic reconstructions demonstrate that Lake Agassiz occupied the area of glacial Lake Nakina (located northeast of modern Lake Nipigon) by the The Pas stage (ca. 8000 14C years BP) and that Lake Agassiz drainage through the Nipigon basin to the Great Lakes ended before the succeeding Gimli stage.


2014 ◽  
Vol 33 (2) ◽  
pp. 214-226
Author(s):  
Beth Johnson

During the last North American deglaciation, meltwater collected along the margins of the Laurentide Ice Sheet in proglacial lakes, the largest of these being glacial Lake Agassiz, which existed for over five thousand years starting ~13,950 cal. years B.P. Lake Agassiz was first described in 1823 by mineralogist William H. Keating of the Long Expedition at a time when diluvianism was often used to explain ancient lakes. Subsequent researchers also recognized the existence of an ancient lake, but the first connections of this lake to a possible glacial source came in 1873. Starting in 1879, Warren Upham spent the next fifteen years researching and publishing on Lake Agassiz, eventually publishing his seminal work, the U.S. Geological Survey's Monograph 25 The Glacial Lake Agassiz. Some of Upham's interpretations were later challenged by William A. Johnston, who favored a more complex lake history.


2003 ◽  
Vol 59 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Timothy G. Fisher

AbstractSediment cores with new radiocarbon dates from the southern outlet of glacial Lake Agassiz indicate that meltwater delivery to the Mississippi valley was disrupted at 10,800 14C yr B.P. and the outlet was abandoned by 9400 14C yr B.P. These findings confirm the timing of generally accepted terminations of the Lockhart and Emerson Phases of Lake Agassiz. Additionally, the radiocarbon chronology indicates that the spillway was fully formed by 10,800 14C yr B.P. and that the occupancy in late-Emerson time was likely short-lived with minimal spillway erosion.


2014 ◽  
Vol 51 (9) ◽  
pp. 850-861 ◽  
Author(s):  
Xiuju Liu ◽  
Timothy G. Fisher ◽  
Kenneth Lepper ◽  
Thomas V. Lowell

The cause and age of the Moorhead low-water Phase of glacial Lake Agassiz remains uncertain. New geochemical (X-ray fluorescence (XRF) and elemental analysis) and chronological (optically stimulated luminescence (OSL)) data are used to test for evaporative enrichment within lacustrine sediment from Rabbit Lake, a small basin just above the highest Lake Agassiz strandline, and from two Lake Agassiz sediment cores at Fargo, North Dakota. Increases in quartz and gypsum interpreted to be of aeolian origin suggest increased aridity at Rabbit Lake sometime after 13 540–13 750 cal years BP. From the Fargo cores, lacustrine sediment of the Brenna and Sherack formations did not show convincing evidence for evaporative enrichment. However, this result is complicated by an erosional contact at the top of the Brenna Formation. A thin middle sand unit between the Brenna and Sherack formation clays is stratigraphically equivalent to the Poplar River Formation, West Fargo Member, but its properties differ from the fluvial sand of the West Fargo Member. Four OSL ages from the organic-poor, middle sand unit at Fargo range between 12.8 ± 0.2 and 13.5 ± 0.2 ka (with ±1.6 ka uncertainty) and suggest lake level fell at Fargo at, or before, 13.1 ± 0.2 ka, the average of the OSL ages. With different sedimentological properties, and a difference of ∼1750 years between the new OSL ages and previously published ages on the West Fargo Member sand, additional work is required to determine whether the middle sand unit is a new member of the Poplar River Formation, recording an earlier and different depositional environment than the West Fargo Member. From a plot of available ages for the Moorhead Phase, the regression remains poorly constrained in time.


1975 ◽  
Vol 5 (4) ◽  
pp. 529-540 ◽  
Author(s):  
J.C. Ritchie ◽  
L.K. Koivo

The sediment and diatom stratigraphy of a small pond on The Pas moraine, near Grand Rapids, Manitoba, reveals a change in sedimentary environment related directly to the last stages of Glacial Lake Agassiz. Beach sands were replaced by clay 7300 14C y. a., then by organic silt and, at 4000 14C y. a. by coarse organic detritus; the corresponding diatom assemblages were (I) a predominantly planktonic spectrum in beach sands, (II) a rich assemblage of nonplanktonic forms, and (III) a distinctly nonplanktonic acidophilous spectrum. These results confirm Elson's (1967) reconstruction of the extent and chronology of the final (Pipun) stage of Glacial Lake Agassiz. The sedimentary environments change from a sandy beach of a large lake at 7300 BP to a small, shallow eutrophic pond with clay and silt deposition from 7000 to 4000 BP. From 4000 BP to the present, organic detritus was deposited in a shallow pond that tended toward dystrophy.


2012 ◽  
Vol 55 ◽  
pp. 125-144 ◽  
Author(s):  
Lorna D. Linch ◽  
Jaap J.M. van der Meer ◽  
John Menzies

Sign in / Sign up

Export Citation Format

Share Document