WATER PLANNING AT A GLANCE: SYSTEMS AND TOPICAL ANALYSIS OF REGIONAL PATTERNS FOR THE STATE OF TEXAS

2017 ◽  
Author(s):  
Emery Charles Wolf ◽  
2011 ◽  
Vol 43 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Jeffrey D. Mullen

Several states in the southeast have acknowledged the need for statewide water planning but have yet to act. In contrast, Georgia is on the cusp of completing the Georgia Comprehensive Statewide Water Management Plan (SWMP). The SWMP provides for resource assessments, forecasts, and regional water planning. Over the past three years, an extensive effort has been made to implement the SWMP. This article describes the planning process undertaken in Georgia. Several of the recommended practices are also highlighted and critiqued with respect to their potential to affect aggregate water use in the state.


Author(s):  
Scott V. Harder ◽  
Joseph A. Gellici ◽  
Andrew Wachob ◽  
Charles A. Pellett

Economic development, environmental protection, and public health are critical quality-of-life issues that depend on a reliable supply of water. Increased water demand and climate variability (drought) are two major factors that have the potential to limit future water availability in the state of South Carolina. The development of a comprehensive water-resources management plan for the state is vital for ensuring that an adequate and reliable supply of water will be available to sustain all future uses. The South Carolina Department of Natural Resources (SCDNR) is tasked legislatively with developing water planning and policy initiatives in the state and has initiated a long-term process to update the state water plan, last published in 2004. One of the major recommendations in the 2004 plan was to form River Basin Councils (RBCs) in each of the major river basins in the state for the purpose of water planning. In 2014, SCDNR initiated a multiyear process to develop regional water plans that will serve as the foundation for a new state water plan. A central component of the process was the creation of a Planning Process Advisory Committee (PPAC) for the purpose of developing formal guidelines on the formation of RBCs and the development of river basin plans for the eight designated river basins in the state. The PPAC is composed of a diverse group of stakeholders and includes representation from water utilities, energy utilities, trade organizations, academia, conservation groups, agriculture, and the general public. The work of the PPAC culminated in a report, the South Carolina State Water Planning Framework, which was published in October of 2019. The river basin plans will identify current and future water availability issues and describe a management plan to address these issues to ensure that an adequate and reliable supply of water will be available for future generations. The purpose of this paper is to provide a general overview of the state’s river basin planning process.


2009 ◽  
Vol 48 (8) ◽  
pp. 1527-1541 ◽  
Author(s):  
John T. Abatzoglou ◽  
Kelly T. Redmond ◽  
Laura M. Edwards

Abstract A novel approach is presented to objectively identify regional patterns of climate variability within the state of California using principal component analysis on monthly precipitation and temperature data from a network of 195 climate stations statewide and an ancillary gridded database. The confluence of large-scale circulation patterns and the complex geography of the state result in 11 regional modes of climate variability within the state. A comparison between the station and gridded analyses reveals that finescale spatial resolution is needed to adequately capture regional modes in complex orographic and coastal settings. Objectively identified regions can be employed not only in tracking regional climate signatures, but also in improving the understanding of mechanisms behind regional climate variability and climate change. The analysis has been incorporated into an operational tool called the California Climate Tracker.


Author(s):  
Devendra M. Amatya ◽  
Augustine Muwamba ◽  
Sudhanshu Panda ◽  
Timothy Callahan ◽  
Scott Harder ◽  
...  

Given South Carolina’s ongoing water planning efforts, in this study, we evaluated seasonal and annual potential evapotranspiration (PET) using measured Class A pan evaporation (PE) and 3 widely used estimation methods for the state with 3 distinct physiographic regions (Coastal, Piedmont, and Mountain). The methods were temperature-based Hargreaves-Samani (H-S), radiation-based Priestley-Taylor (P-T), and process-based Penman-Monteith (P-M). The objectives of the study were to (a) describe seasonal and temporal distribution of PET by all methods, (b) quantify differences among PET methods, and (c) identify relationships between monthly PE and estimated PET by each method. Daily weather variables from 59 National Oceanic and Atmospheric Administration weather stations distributed in the 3 regions of South Carolina (SC) were used to estimate daily PET for an 18-year period (1998–2015). Net radiation was estimated using modeled solar radiation values for weather stations. The average annual H-S PET values adjusted with the empirical radiation factor (KT) and the average annual P-T PET values for 1998–2015 were 1,232 ± 9, 1,202 ± 11, and 1,115 ± 10 mm and 1,179 ± 10, 1,137 ± 11, and 1,082 ± 11 mm, respectively, for the Coastal, Piedmont, and Mountain regions. Both the mean annual H-S and P-T PET for the Mountain region were significantly (α = 0.05) lower than for the Coastal and Piedmont regions. The mean annual P-T PET for the Coastal region was significantly (α = 0.05) greater than that for the Piedmont. Regional differences showed that estimated PET for 1998-2015 was greatest in the Coastal and lowest in the Mountain region. Comparison of all 3 methods using only common 8-year data showed mean annual P-M PET, varying from 1,142 mm in the Piedmont to 1,270 mm in the Coastal region, was significantly higher than both the H-S and P-T PET in both regions. The greatest mean monthly H-S and P-T PET values were observed in June and July. Statistical evaluation using Nash–Sutcliffe efficiency and percent bias showed a slightly better agreement of H-S PET with both the measured PE as well as the P-M method, followed by the P-T. However, the P-T method yielded a close to unity slope and slightly higher R2 than the H-S PET when compared with the PE. The P-T PET method that uses both the temperature and radiation data may be preferred for SC with a humid climate dominated by forest land use, given more rigorous ground-truthing of modeled solar radiation as data become available. Surface interpolation algorithm, inverse distance weighted, was used to spatially map both the distributed H-S and P-T PET for the state. Results from this study can be used to support several components of the ongoing water planning efforts in SC.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Sign in / Sign up

Export Citation Format

Share Document