REDUCED-ORDER MODELING FOR ESTIMATING CO2 STORAGE AND ENHANCED COALBED METHANE OF UNCONVENTIONAL COAL SEAM RESERVOIRS

2018 ◽  
Author(s):  
Ryan Kammer ◽  
◽  
Kevin Ellett ◽  
Richard S. Middleton ◽  
Chris Korose
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Hao Han ◽  
Shun Liang ◽  
Yaowu Liang ◽  
Xuehai Fu ◽  
Junqiang Kang ◽  
...  

Elastic modulus is an important parameter affecting the permeability change in the process of coalbed methane (CBM)/enhanced coalbed methane (ECBM) production, which will change with the variable gas content. Much research focuses on the constant value of elastic modulus; however, variable stiffness of coal during CO2 injection has been considered in this work. The coupled thermo-hydro-mechanical (THM) model is established and then validated by primary production data, as well as being applied in the prediction of CO2/N2-ECBM recovery. The results show that the harder coal seam is beneficial to primary production, while the softer coal seam results in greater CO2/N2-ECBM recovery and CO2 sequestration. N2 and CO2 mixture injection could be applied to balance early N2 breakthrough and pronounced matrix swelling induced by CO2 adsorption, and to prolong the process of effective CH4 recovery. Besides, reduction in stiffness of coal seam during CO2 injection would moderate the significant permeability loss induced by matrix swelling. With the increase of the weakening degree of coal seam stiffness, CO2 cumulative storage also shows an increasing trend. Neglecting the weakening effect of CO2 adsorption on coal seam stiffness could underestimate the injection capacity of CO2. Injection of hot CO2 could improve the permeability around injection well and then enhance CO2 cumulative storage and CBM recovery. Furthermore, compared with ECBM production, injection temperature is more favorable for CO2 storage, especially within hard coal seams. Care should be considered that significant permeability change is induced by mechanical characteristics alterations in deep burial coal seams in further study, especially for CO2-ECBM projects.


2007 ◽  
Vol 1 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Sam Wong ◽  
David Law ◽  
Xiaohui Deng ◽  
John Robinson ◽  
Bernice Kadatz ◽  
...  

2018 ◽  
Vol 68 ◽  
pp. 49-67 ◽  
Author(s):  
Zhaoyang Larry Jin ◽  
Louis J. Durlofsky

2009 ◽  
Vol 1 (1) ◽  
pp. 3407-3414 ◽  
Author(s):  
Frank van Bergen ◽  
Pascal Winthaegen ◽  
Henk Pagnier ◽  
Pawel Krzystolik ◽  
Bartlomiej Jura ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1385 ◽  
Author(s):  
Hou Yudong ◽  
Huang Saipeng ◽  
Han Jian ◽  
Liu Xingbin ◽  
Han Lianfu ◽  
...  

The injection of CO2 to displace CH4 in coal seams is an effective method to exploit coalbed methane (CBM), for which the CO2 injection temperature and pressure are important influential factors. We performed simulations, using COMSOL Multiphysics to determine the effect of CO2 injection temperature and pressure on CO2-enhanced coalbed methane (CO2-ECBM) recovery, according to adsorption/desorption, seepage, and diffusion of binary gas (CO2 and CH4) in the coal seam, and deriver a thermal–hydraulic–mechanical coupling equation of CO2-ECBM. The simulation results show that, as CO2 injection pressure in CO2-ECBM increases, the molar concentration and displacement time of CH4 in the coal seam significantly decrease. With increasing injection temperature, the binary gas adsorption capacity in the coal seam decreases, and CO2 reserves and CH4 production decrease. High temperatures are therefore not conducive for CH4 production.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 626 ◽  
Author(s):  
Chaojun Fan ◽  
Mingkun Luo ◽  
Sheng Li ◽  
Haohao Zhang ◽  
Zhenhua Yang ◽  
...  

The reservoir permeability dominates the transport of gas and water in coal seam. However, coal seams rich in gas usually contain various pores and fractures blocked by a large amount of minerals, which leads to an ultra-low permeability and gas extraction rate, and thus an increase of drilling workload. We first propose a thermo-hydro-mechanical-chemical coupled model (THMC) for the acid fracturing enhanced coalbed methane recovery (AF-ECBM). Then, this model is applied to simulate the variation of key parameters during AF-ECBM using a 2D geometry. The effect of different extraction schedules are comparatively analyzed to give an insight into these complex coupling responses in coal seam. Result confirms that the AF-ECBM is an effective way to increase the reservoir permeability and improve the gas production using the proposed model. The range of permeability increment zone increases most dramatically in the way of acid fracturing, followed by none-acid fracturing and acidizing over time. The gas production in order is: acid fracturing (AF-ECBM) > fracturing (F-ECBM) > acidification (A-ECBM)> direct extraction (D-CBM).


SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 448-467 ◽  
Author(s):  
Zhijie Wei ◽  
Dongxiao Zhang

Summary Enhanced coalbed-methane (ECBM) recovery by the injection of CO2 and/or N2 is an attractive method for recovering additional natural gas resources, while at the same time sequestering CO2 in the subsurface. For the naturally fractured coalbed-methane (CBM) reservoirs, the coupled fluid-flow and geomechanics effects involving both the effective-stress effect and the matrix shrinkage/swelling, are crucial to simulate the permeability change and; thus gas migration during primary or enhanced CBM recovery. In this work, a fully coupled multiphase multicomponent flow and geomechanics model is developed. The coupling effects are modeled by introducing a set of elaborate geomechanical equations, which can provide more fundamental understanding about the solid deformation and give a more accurate permeability/porosity prediction over the existing analytical models. In addition, the fluid-flow model in our study is fully compositional; considering both multicomponent gas dissolution and water volatility. To obtain accurate gas solubility in the aqueous phase, the Peng-Robinson equation of state (EOS) is modified according to the suggestions of Søreide and Whitson (1992). An extended Langmuir isotherm is used to describe the adsorption/desorption behavior of the multicomponent gas to/from the coal surface. With a fully implicit finite-difference method, we develop: a 3D, multiphase, multicomponent, dual-porosity CBM/ECBM research code that is fully compositional and has fully coupled fluid flow and geomechanics. It has been partially validated and verified by comparison against other simulators such as GEM, Eclipse, and Coalgas. We then perform a series of simulations/investigations with our research code. First, history matching of Alberta flue-gas-injection micropilot data is performed to test the permeability model. The commonly used uniaxial-strain and constant-overburden-stress assumptions for analytical permeability models are then assessed. Finally, the coupling effects of fluid flow and geomechanics are investigated, and the impact of different mixed CO2/N2 injection scenarios is explored for both methane (CH4) production and CO2 sequestration.


Sign in / Sign up

Export Citation Format

Share Document