RESEARCH AND APPLICATION OF PETROPHYSICAL FACIES IN LOW PERMEABILITY RESERVOIRS—A CASE STUDY OF CHANG 6 RESERVOIR OF JIYUAN OILFIELD IN ORDOS BASIN

2019 ◽  
Author(s):  
Zhezhi Cui ◽  
◽  
Wei Sun
2013 ◽  
Vol 868 ◽  
pp. 70-73
Author(s):  
Yi Wei Hao ◽  
Hai Yan Hu

Ordos Basin is the second largest sedimentary basin in China with very rich oil and gas resources. The exploration targets are typical reservoirs of low permeability. To determine the accumulation mechanism of tight sandstone reservoir, thin section, SEM, numerical calculation were used. The result showed that sandstone should be ultro-low permeability reservoirs with the high content feldspar and lithic arkose or feldspathic litharenite. The reservoir became tight while oil filling, buoyant force is too small to overcome the resistance of capillary force. Therefore, overpressure induced by source rock generation is the accumulation drive force.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 344
Author(s):  
Ping Yue ◽  
Rujie Zhang ◽  
James J. Sheng ◽  
Gaoming Yu ◽  
Feng Liu

As the demands of tight-oil Enhanced Oil Recovery (EOR) and the controlling of anthropogenic carbon emission have become global challenges, Carbon Capture Utilization and Sequestration (CCUS) has been recognized as an effective solution to resolve both needs. However, the influential factors of carbon dioxide (CO2) geological storage in low permeability reservoirs have not been fully studied. Based on core samples from the Huang-3 area of the Ordos Basin, the feasibility and influential factors of geological CO2 sequestration in the Huang-3 area are analyzed through caprock breakthrough tests and a CO2 storage factor experiment. The results indicate that capillary trapping is the key mechanism of the sealing effect by the caprock. With the increase of caprock permeability, the breakthrough pressure and pressure difference decreased rapidly. A good exponential relationship between caprock breakthrough pressure and permeability can be summarized. The minimum breakthrough pressure of CO2 in the caprock of the Huang-3 area is 22 MPa, and the breakthrough pressure gradient is greater than 100 MPa/m. Huang-3 area is suitable for the geological sequestration of CO2, and the risk of CO2 breakthrough in the caprock is small. At the same storage percentage, the recovery factor of crude oil in larger permeability core is higher, and the storage percentage decreases with the increase of recovery factor. It turned out that a low permeability reservoir is easier to store CO2, and the storage percentage of carbon dioxide in the miscible phase is greater than that in the immiscible phase. This study can provide empirical reference for caprock selection and safety evaluation of CO2 geological storage in low permeability reservoirs within Ordos Basin.


Sign in / Sign up

Export Citation Format

Share Document