CHEMICAL ZONING IN GARNET AS EVIDENCE FOR THE RAPID EXHUMATION OF UHP ROCKS

2019 ◽  
Author(s):  
Mark J. Caddick ◽  
◽  
Robert J. Tracy
Keyword(s):  
2021 ◽  
Vol 176 (7) ◽  
Author(s):  
Thomas Bovay ◽  
Daniela Rubatto ◽  
Pierre Lanari

AbstractDehydration reactions in the subducting slab liberate fluids causing major changes in rock density, volume and permeability. Although it is well known that the fluids can migrate and interact with the surrounding rocks, fluid pathways remain challenging to track and the consequences of fluid-rock interaction processes are often overlooked. In this study, we investigate pervasive fluid-rock interaction in a sequence of schists and mafic felses exposed in the Theodul Glacier Unit (TGU), Western Alps. This unit is embedded within metaophiolites of the Zermatt-Saas Zone and reached eclogite-facies conditions during Alpine convergence. Chemical mapping and in situ oxygen isotope analyses of garnet from the schists reveal a sharp chemical zoning between a xenomorphic core and a euhedral rim, associated to a drop of ~ 8‰ in δ18O. Thermodynamic and δ18O models show that the large amount of low δ18O H2O required to change the reactive bulk δ18O composition cannot be produced by dehydration of the mafic fels from the TGU only, and requires a large contribution of the surrounding serpentinites. The calculated time-integrated fluid flux across the TGU rocks is 1.1 × 105 cm3/cm2, which is above the open-system behaviour threshold and argues for pervasive fluid flow at kilometre-scale under high-pressure conditions. The transient rock volume variations caused by lawsonite breakdown is identified as a possible trigger for the pervasive fluid influx. The calculated schist permeability at eclogite-facies conditions (~ 2 × 10–20 m2) is comparable to the permeability determined experimentally for blueschist and serpentinites.


2021 ◽  
Author(s):  
Susanne Seitz ◽  
Guilherme Gualda ◽  
Luca Caricchi

<p>Zoned minerals preserve information about their growth conditions, by changing their composition as function of temperature, pressure and melt composition. By carefully looking at a zoned minerals we can determine characteristics of the main stages of the evolution of magmatic systems.</p><p>We study alkali feldspar megacrysts from the Tuolumne Intrusive Complex in California, with the aim of deciphering chemical signatures of rejuvenation events. We characterize the chemical zoning of alkali feldspar using X-ray tomography, BSE imaging, EDS-SEM analysis and LA-ICPMS analysis along profiles. We use hierarchical clustering based on major and trace elements to objectively identify compositional groups for each chemical profile. By reducing the complexity of chemical zoning to one dimension (i.e. cluster number) we can trace the evolution of the conditions of growth and identify rejuvenation events.</p><p>Alkali feldspar megacrysts (up to 20 cm in size) from the Cathedral Peak unit of the Tuolumne Intrusive Complex occur predominantly disperse and only make between 8 - 12 % of the total crystal population. They are mostly homogeneous in major element, and markedly oscillatory zoned in trace elements such as Ba, Sr, and Rb. Using hierarchical clustering we identify four different chemical groups within the alkali feldspar crystals. Each chemical group is repeated multiple times in a single crystal. Overall the crystals show a decreasing trend of Ba towards the rim. Extended alkali feldspar crystallization would lead to a depletion of Ba in the melt and consequently to the growth of low Ba-zones of alkali feldspar. In some crystals the sequence of decreasing Ba is repeated twice. We propose that this reflects melt recharge in a melt-rich magmatic system.</p>


1995 ◽  
Vol 59 (394) ◽  
pp. 1-14 ◽  
Author(s):  
Mitsuyoshi Kimata ◽  
Norimasa Nishida ◽  
Masahiro Shimizu ◽  
Shizuo Saito ◽  
Tomoaki Matsui ◽  
...  

AbstractAnorthite megacrysts are common in basalts from the Japanese Island Arc, and signally rare in other global fields. These anorthites are 1 to 3 cm in size and often contain several corroded Mg-olivine inclusions. The megacrysts generally range from An94Ab4Ot2 to An89Ab6Ot5 (Ot: other minor end-members, including CaFeSi3O8, CaMgSi3O8, AlAl3SiO8, □Si4O8) and show no chemical zoning. They often show parting. Redclouded megacrysts contain microcrystals of native copper with a distribution reminiscent of the shape of a planetary nebula. Hydrocarbons are also present, both in the anorthite megacrysts and in the olivines included within them. Implications of lateral variations in the Fe/Mg ratio of the included olivines, in Sr-content and in Sr-isotope ratio of the anorthite megacrysts with respect to the Japanese island arc, relate to mixing of crustal components and subducted slab-sediments into the basaltic magmas.


2021 ◽  
Author(s):  
Lucie Tajcmanova ◽  
Yury Podladchikov ◽  
Evangelos Moulas

<p>Quantifying natural processes that shape our planet is a key to understanding the geological observations. Many phenomena in the Earth are not in thermodynamic equilibrium. Cooling of the Earth, mantle convection, mountain building are examples of dynamic processes that evolve in time and space and are driven by gradients. During those irreversible processes, entropy is produced. In petrology, several thermodynamic approaches have been suggested to quantify systems under chemical and mechanical gradients. Yet, their thermodynamic admissibility has not been investigated in detail. Here, we focus on a fundamental, though not yet unequivocally answered, question: which thermodynamic formulation for petrological systems under gradients is appropriate – mass or molar?  We provide a comparison of both thermodynamic formulations for chemical diffusion flux, applying the positive entropy production principle as a necessary admissibility condition. Furthermore, we show that the inappropriate solution has dramatic consequences for understanding the key processes in petrology, such as chemical diffusion in the presence of stress gradients.</p>


Author(s):  
Pavel Borisovich SHIRYAEV ◽  
◽  
Nadezhda Vladimirovna VAKHRUSHEVA ◽  

Relevance of the work. The conditions for the formation of chromium ores in alpine-type ultramafites remain a topical subject of research. In recent years, scientific papers have focused on the issue of changing the chemical composition of ore-forming minerals and chromium ores under the influence of deformation and dynamic recrystallization processes accompanying metamorphism. The results of such studies make it possible to formulate a new model of the formation of chromium mineralization taking into account a significant amount of geological data indicating that alpine-type ultramafic rocks are “mantle tectonites”. In our work, we have studied zonal ore-forming spinels from chrome ores of the Polar Urals. The results of the study make it possible to associate the formation of chemical zoning in minerals and ore bodies with recrystallization under the influence of stress tension. Purpose of the work – study of the conditions for the formation of chemical zoning of chromium spinels from alumina and medium chromium ores of the Voikaro-Syninsky massif. Results. Zonal ore-forming spinels from medium-chromium and aluminous chromitites of the Voikaro-Syninsky massif (Polar Urals) have been studied. It was found that replacement rims are developed along the grains of oreforming spinels with an increased content of Cr2 O3 and an oxidation state of iron in relation to the core, as well as a reduced content of Al2 O3 . The oxidation state of iron in the rims of most grains does not exceed the values typical for unaltered ore-forming spinels. T–fO2 parameters of zoning formation in spinels were determined by oxythermobarometry. Comparison with zoned chrome spinels of the Golyamo Kamenyane massif (Bulgaria). Conclusion. Metamorphic transformations of alumina and medium-chromium chromitites of the Voikaro-Syninsky massif, occurring under subcrustal conditions under the action of directional stress at relatively constant T–fO2 parameters, lead to an increase in the chromium content of the ore mineral.


Lithos ◽  
2015 ◽  
Vol 226 ◽  
pp. 217-232 ◽  
Author(s):  
Sid Ali Doukkari ◽  
Khadidja Ouzegane ◽  
Gaston Godard ◽  
Johann F.A. Diener ◽  
Jean-Robert Kienast ◽  
...  
Keyword(s):  

2020 ◽  
Vol 175 (11) ◽  
Author(s):  
Vho Alice ◽  
Rubatto Daniela ◽  
Lanari Pierre ◽  
Giuntoli Francesco ◽  
Regis Daniele ◽  
...  

Abstract Subduction zones represent one of the most critical settings for fluid recycling as a consequence of dehydration of the subducting lithosphere. A better understanding of fluid flows within and out of the subducting slab is fundamental to unravel the role of fluids during burial. In this study, major and trace element geochemistry combined with oxygen isotopes were used to investigate metasediments and eclogites from the Sesia Zone in order to reconstruct the effect of internal and external fluid pulses in a subducted continental margin. Garnet shows a variety of textures requiring dissolution–precipitation processes in presence of fluids. In polycyclic metasediments, garnet preserves a partly resorbed core, related to pre-Alpine high-temperature/low-pressure metamorphism, and one or multiple rim generations, associated with Alpine subduction metamorphism. In eclogites, garnet chemical zoning indicates monocyclic growth with no shift in oxygen isotopes from core to rim. In metasediments, pre-Alpine garnet relics show δ18O values up to 5.3 ‰ higher than the Alpine rims, while no significant variation is observed among different Alpine garnet generations within each sample. This suggests that an extensive re-equilibration with an externally-derived fluid of distinct lower δ18O occurred before, or in correspondence to, the first Alpine garnet growth, while subsequent influxes of fluid had δ18O close to equilibrium. The observed shift in garnet δ18O is attributed to a possible combination of (1) interaction with sea-water derived fluids during pre-Alpine crustal extension and (2) fluids from dehydration reactions occurring during subduction of previously hydrated rocks, such as the serpentinised lithospheric mantle or hydrated portions of the basement.


Sign in / Sign up

Export Citation Format

Share Document