BIOREMEDIATION OF ARSENIC CONTAMINATED GROUNDWATER IN A NATURAL SITE IN MACON COUNTY, ALABAMA

2019 ◽  
Author(s):  
Md Mahfujur Rahman ◽  
◽  
Ashraf Uddin ◽  
Ming-Kuo Lee
2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


2001 ◽  
Vol 11 (3) ◽  
pp. 63-72
Author(s):  
Daniel Sullivan ◽  
Michael Merdinger ◽  
William Kosco ◽  
Asim B. Ray

2012 ◽  
Vol 253-255 ◽  
pp. 1098-1101
Author(s):  
Hong Tao Hu

The natural and electrokinetic enhanced migration method was studied by the experiments in groundwater contaminated by heavy metal Pb in this work. The experimental results showed that the variation rule of Pb reflected that its migration was weak and the removal efficiency was only 9.30% near the anode in the natural seepage condition, but under the enhanced migration and remediation function, the pollutants could be enriched and removed faster, thus the removal efficiency of Pb was 46.72% near the anode at the end of experiment when the experimental voltage gradient was 0.28V/cm, which made known that this electrokinetic enhanced migration of Pb in contaminated groundwater was more effective method than that of natural seepage migration and enhanced the removal of contaminant in aquifer.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 103
Author(s):  
Xiaoming Song ◽  
Yuewen Zhang ◽  
Nan Cao ◽  
Dong Sun ◽  
Zhipeng Zhang ◽  
...  

This study developed a nano-magnetite-modified biochar material (m-biochar) using a simple and rapid in situ synthesis method via microwave treatment, and systematically investigated the removal capability and mechanism of chromium (VI) by this m-biochar from contaminated groundwater. The m-biochar was fabricated from reed residues and magnetically modified by nano-Fe3O4. The results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) characterisations confirmed the successful doping of nano-Fe3O4 on the biochar with an improved porous structure. The synthesised m-biochar exhibited significantly higher maximum adsorption capacity of 9.92 mg/g compared with that (8.03 mg/g) of the pristine biochar. The adsorption kinetics followed the pseudo-second-order model and the intraparticle diffusion model, which indicated that the overall adsorption rate of Cr(VI) was governed by the processes of chemical adsorption, liquid film diffusion and intramolecular diffusion. The increasing of the pH from 3 to 11 significantly affected the Cr(VI) adsorption, where the capabilities decreased from 9.92 mg/g to 0.435 mg/g and 8.03 mg/g to 0.095 mg/g for the m-biochar and pristine biochar, respectively. Moreover, the adsorption mechanisms of Cr(VI) by m-biochar were evaluated and confirmed to include the pathways of electrostatic adsorption, reduction and complexation. This study highlighted an effective synthesis method to prepare a superior Cr(VI) adsorbent, which could contribute to the effective remediation of heavy metal contaminations in the groundwater.


Sign in / Sign up

Export Citation Format

Share Document