Two-phase subduction and subsequent collision defines the Paleotethyan tectonics of the southeastern Tibetan Plateau: Evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China

2014 ◽  
Vol 126 (11-12) ◽  
pp. 1654-1682 ◽  
Author(s):  
T.N. Yang ◽  
Y. Ding ◽  
H.R. Zhang ◽  
J.W. Fan ◽  
M.J. Liang ◽  
...  
2021 ◽  
Author(s):  
Haijia Lei ◽  
Xiaoming Shen ◽  
Xijun Liu ◽  
Xiudang Tang ◽  
Shiming Zhang

<p>The southeastern Tibetan Plateau experienced significant tectonic uplift, fault activity, climate change and reorgnization of fluvial systems during the late Cenozoic. All these processes were probably accompanied by rapid rock exhumation. Therefore, rock exhumation history in this region could provide a key to reveal the interaction between tectonics, climate and surface processes. Here, we report new apatite and zircon (U-Th)/He dates from a ~1200 m granite vertical profile, located at Shimian county in the Daliang Mountains, southeastern Tibetan Plateau. The age-elevation relationship and thermal history simulation exhibit a two-phase rock exhumation history, one at ~25 Ma (~1 km/Myr) and a second moderate exhumation from ~15 Ma to present (~ 0.2 km/Myr). This two-phase rapid exhumation history is consistent with that of Longmen Shan and Jiulong in the adjacent areas. For the first phase in Oligocene, abundant geological evidence indicates that it was related to the regional uplift caused by the transpressional deformation during India-Asia convergence. However, there are two distinct explanations for the rapid exhumation from ~15 Ma to present: one group suggested this exhumation was related to the rapid river incision caused by regional uplift; By contrast, based on paleo-altimetry data another group proposed the uplift was ceased before the late Miocene in southeastern Tibetan Plateau, and then the enhanced rainfall caused by the East Asian monsoon resulted in rapid exhumation since the Middle Miocene. Our study suggests that the fast exhumation in southeastern Tibetan Plateau since ~15 Ma cannot be attributed solely to the regional uplift or the intensification of Asian monsoon. Combined with the activity history of the Anninghe fault in the study area and the East Asian monsoon evolution history, we suggest that the regional rock exhumation of southeastern Tibetean Plateau since the Middle Miocene could be the result of the combination of tectonic activity and climate change.</p>


2021 ◽  
pp. 1-20
Author(s):  
Feng Cong ◽  
De-Feng He ◽  
Wei-Qiang Ji ◽  
Liang Huang ◽  
Bo Xiong ◽  
...  

Abstract The orogenic process and crustal growth of the Changning–Menglian Palaeo-Tethys orogenic belt in the southeastern Tibetan Plateau is not fully understood. Triassic Caojian rhyolites and granites occur extensively in this orogenic belt and represent important constraints for this issue. This study aims to examine the relationships between the Triassic Caojian rhyolites and granites and to gain a better understanding of their possible petrogenesis. The study used zircon U–Pb geochronology, trace element analyses and Sr–Nd–Hf isotope data to better understand the relationships and possible origin of the rhyolites and granites. Recent zircon U–Pb ages indicated that the Caojian rhyolites were emplaced at 227.2 Ma, whereas age estimates for Caojian granites were slightly older (233.4–236.9 Ma). The Caojian rhyolites are enriched in large-ion lithophile elements and high-field-strength elements, with elevated FeOtot/MgO and Ga/Al ratios. However, they are significantly depleted in Ba, Sr, Eu, P and Ti. These geochemical characteristics indicate that they have an A-type affinity. Furthermore, the Caojian granites comprise biotite monzogranites and granodiorites and show unfractionated composition. Mineralogically, the Caojian granites were found to contain diagnostic I-type minerals such as hornblende. Geochemical data suggest that the petrogenesis of the Triassic Caojian rhyolites is characterized by rejuvenation of crystal mush represented by the Triassic Caojian granites. The necessary thermal input was supplied by mafic magma. This magmatic evolution was likely related to lithospheric delamination and upwelling of the asthenosphere during the Mid- to Late Triassic, forming post-collisional I-type granites and A-type volcanics in the Changning–Menglian Palaeo-Tethys orogenic belt.


2020 ◽  
Vol 85 ◽  
pp. 189-223
Author(s):  
Huining Wang ◽  
Fulai Liu ◽  
M. Santosh ◽  
Jia Cai ◽  
Fang Wang ◽  
...  

2021 ◽  
Vol 811 ◽  
pp. 228871
Author(s):  
Chengyu Zhu ◽  
Guocan Wang ◽  
Philippe Hervé Leloup ◽  
Kai Cao ◽  
Gweltaz Mahéo ◽  
...  

2017 ◽  
Vol 71 (1) ◽  
Author(s):  
Elisabeth Hsu ◽  
Franz K. Huber ◽  
Caroline S. Weckerle

AbstractThe Shuhi of Muli County, Sichuan Province, are one of multiple ethnic groups inhabiting the river gorges of the Qinghai-Gansu-Sichuan corridor between the Tibetan plateau and the Chinese lowlands. The Shuhi have grown paddy rice since times immemorial at an unusually high altitude (ca. 2,300 m above sea level). This article aims to explain this conundrum not merely through the ecology (as is common among Tibetan area specialists), but by researching the cultivation and consumption of rice as a historically-evolved cultural practice. According to a recently formulated agro-archaeological hypothesis regarding the macro-region of Eurasia, it is possible to identify two supra-regional culture complexes distinguished by their respective culinary technologies: rice-boiling versus wheat-grinding-and-baking. The hypothesis posits that the fault line between the two supra-regional cultural complexes is precisely along this river gorges corridor. In this article we provide support for this hypothesis arguing that Shuhi ritual and kinship practices have much affinity with those of other rice-boiling peoples in Southeast Asia, whereas certain of their current religious practices are shared with the wheat-grinding Tibetans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


2022 ◽  
Vol 270 ◽  
pp. 112853
Author(s):  
Fanyu Zhao ◽  
Di Long ◽  
Xingdong Li ◽  
Qi Huang ◽  
Pengfei Han

Sign in / Sign up

Export Citation Format

Share Document