scholarly journals Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event

Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1174-1178 ◽  
Author(s):  
Brenda C. Rocha ◽  
Joshua H.F.L. Davies ◽  
Valdecir A. Janasi ◽  
Urs Schaltegger ◽  
Antônio J.R. Nardy ◽  
...  

Abstract The Valanginian Stage is marked by a period of global positive δ13C carbon cycle perturbation and biotic crises, which are collectively referred to as the Valanginian event (VE). Many attempts have been made to link the Paraná-Etendeka large igneous province volcanism with the VE. However, currently there is no conclusive proof to support this hypothesis, since the timing and duration of the volcanic activity are not known with sufficient precision. In this study, we significantly revise the time scales of magmatism and environmental impact of the Paraná magmatic province (PMP) in Brazil with new high-precision zircon U-Pb ages from the low-Ti Palmas and high-Ti Chapecó sequences. Our data demonstrate that significant volumes of low-Ti silicic rocks from the PMP erupted rapidly at ca. 133.6 Ma within 0.12 ± 0.11 k.y. The age of the high-Ti Chapecó sequence from central PMP is constrained at ca. 132.9 Ma and thus extends the duration of magmatic activity by ∼700 k.y. Our new ages are systematically younger than previous ages and postdate the major positive carbon isotope excursion, indicating that PMP silicic magmatism did not trigger the VE but could have contributed to extending its duration. Within the framework of the stratigraphic column of the PMP, the earliest low-Ti basalts could have been responsible for the VE if they are at least 0.5 m.y. older than the low-Ti silicic rocks dated herein.

2020 ◽  
Author(s):  
Urs Schaltegger ◽  
Philipp Widmann ◽  
Nicolas D. Greber ◽  
Luis Lena ◽  
Sean P. Gaynor ◽  
...  

<p>The connection between volcanic activity of large igneous provinces and the respective feedback from environment and biosphere contributing to the carbon cycle has been investigated at the present temporal resolution of high-precision U/Pb dating. Uncertainties of 0.05 % on the <sup>206</sup>Pb/<sup>238</sup>U age from zircon dating allow a resolution of 30-50 ka pulses of magmatic activity; simultaneously, the duration of carbon isotope excursions (CIE) can be determined, the geological boundaries dated, or global sedimentary gaps can be quantified at the same level of precision. This contribution demonstrates with two case studies that we can refine the contemporaneity and start to reliably infer causality of consecutive events at the 10<sup>4</sup> year level.</p><p>Until the Anisian the aftermath of the Permo-Triassic Boundary Mass extinction (PTBME; ~251.94 Ma, Baresel et al., 2017) is characterized by profound fluctuations of the global carbon cycle with amplitudes of up to 8 ‰ in d<sup>13</sup>C<sub>carb</sub> values. These represent large variations in the global climate and biological crises, in particular during the end-Smithian extinction event (~249.1 Ma). A precise chronology from the southern Nanpanjiang basin (China) allows for a quantification of these fluctuations of Earth climate. Following the volcanic pulse causing the PTBME, several discontinuous episodes of volcanism of the Siberian Large Igneous Province (S-LIP) were generally assumed to have caused the subsequent Early Triassic carbon cycle fluctuations. This is, however, in disagreement with the geochronological database of precise zircon U/Pb dates that put an end to the volcanic activity at 250.6 Ma (Burgess & Bowring, 2015; Augland et al., 2019). Therefore, recurrent S-LIP volcanism is an unlikely explanation for the Early Triassic unstable carbon cycle.</p><p>The initial intrusive pulse of the Karoo Large Igneous Province (K-LIP) formed the sill/dyke complex of the Karoo basin, South Africa. New, precise U/Pb geochronology confirms its very short duration at around 183.2-182.8 Ma (Burgess et al., 2015; Corfu et al., 2016), as well as its synchronicity with the lower Toarcian oceanic anoxic event (T-OAE), and a carbon cycle disturbance of presumable global importance. Repeated excursions in d<sup>13</sup>C<sub>org</sub> of up to 3 ‰ in the late Pliensbachian (~185.5 Ma) as well as at the Pliensbachian-Toarcian boundary (~183.5 Ma) are therefore at least partly older than any known magmatic activity of the K-LIP (Lena et al., 2019). We therefore, again, must invoke non-volcanic drivers in order to explain the instability of the carbon cycle.</p><p>These two case histories demonstrate that in order to invoke causality and global importance to carbon cycle instability, as well as for the testing of its correlation with volcanic episodes, we need to rely on geochronology of both sedimentary and volcanic records at the 10<sup>4</sup> years level of precision.</p><p>References: Augland et al. (2019) Scientific Reports, 9:18723 ; Baresel et al. (2017) Solid Earth, 8, 361–378, 2017; Burgess & Bowring (2015) Science Advances, 1(7), e1500470–e1500470; Burgess et al. (2015) Earth and Planetary Science Letters, 415(C), 90–99; Corfu, F. et al. (2016) Earth and Planetary Science Letters, 434(C), 349–352; Lena et al. (2019) Scientific Reports, 9:18430.</p>


2017 ◽  
Vol 114 (8) ◽  
pp. 1811-1816 ◽  
Author(s):  
Ashley P. Gumsley ◽  
Kevin R. Chamberlain ◽  
Wouter Bleeker ◽  
Ulf Söderlund ◽  
Michiel O. de Kock ◽  
...  

The first significant buildup in atmospheric oxygen, the Great Oxidation Event (GOE), began in the early Paleoproterozoic in association with global glaciations and continued until the end of the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact timing of and relationships among these events are debated because of poor age constraints and contradictory stratigraphic correlations. Here, we show that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca. 2,460 and 2,426 Ma, ∼100 My earlier than previously estimated, based on an age of 2,426 ± 3 Ma for Ongeluk Formation magmatism from the Kaapvaal Craton of southern Africa. This age helps define a key paleomagnetic pole that positions the Kaapvaal Craton at equatorial latitudes of 11° ± 6° at this time. Furthermore, the rise of atmospheric oxygen was not monotonic, but was instead characterized by oscillations, which together with climatic instabilities may have continued over the next ∼200 My until ≤2,250–2,240 Ma. Ongeluk Formation volcanism at ca. 2,426 Ma was part of a large igneous province (LIP) and represents a waning stage in the emplacement of several temporally discrete LIPs across a large low-latitude continental landmass. These LIPs played critical, albeit complex, roles in the rise of oxygen and in both initiating and terminating global glaciations. This series of events invites comparison with the Neoproterozoic oxygen increase and Sturtian Snowball Earth glaciation, which accompanied emplacement of LIPs across supercontinent Rodinia, also positioned at low latitude.


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thea H. Heimdal ◽  
Yves Goddéris ◽  
Morgan T. Jones ◽  
Henrik H. Svensen

AbstractThe emplacement of the Karoo Large Igneous Province (LIP) occurred synchronously with the Toarcian crisis (ca. 183 Ma), which is characterized by major carbon cycle perturbations. A marked increase in the atmospheric concentration of CO2 (pCO2) attests to significant input of carbon, while negative carbon isotope excursions (CIEs) in marine and terrestrial records suggest the involvement of a 12C-enriched source. Here we explore the effects of pulsed carbon release from the Karoo LIP on atmospheric pCO2 and δ13C of marine sediments, using the GEOCLIM carbon cycle model. We show that a total of 20,500 Gt C replicates the Toarcian pCO2 and δ13C proxy data, and that thermogenic carbon (δ13C of −36 ‰) represents a plausible source for the observed negative CIEs. Importantly, an extremely isotopically depleted carbon source, such as methane clathrates, is not required in order to replicate the negative CIEs. Although exact values of individual degassing pulses represent estimates, we consider our emission scenario realistic as it incorporates the available geological knowledge of the Karoo LIP and a representative framework for Earth system processes during the Toarcian.


Sign in / Sign up

Export Citation Format

Share Document