scholarly journals Closing the Canada Basin: Detrital zircon geochronology relationships between the North Slope of Arctic Alaska and the Franklinian mobile belt of Arctic Canada

Geosphere ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 1366-1384 ◽  
Author(s):  
Eric S. Gottlieb ◽  
Kristian E. Meisling ◽  
Elizabeth L. Miller ◽  
Charles G. “Gil” Mull
Geosphere ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 479-500
Author(s):  
Steven D. Andrews ◽  
Andrew Morton ◽  
Audrey Decou ◽  
Dirk Frei

Abstract In this study, single-grain mineral geochemistry, detrital zircon geochronology, and conventional heavy-mineral analysis are used to elucidate sediment transport pathways that existed in the North Atlantic region during the Triassic. The presence of lateral and axial drainage systems is identified and their source regions are constrained. Axial systems are suggested to have likely delivered sediment sourced in East Greenland (Milne Land–Renland) as far south as the south Viking Graben (>800 km). Furthermore, the data highlight the existence of lateral systems issuing from Western Norway and the Shetland Platform as well as a major east-west–aligned drainage divide positioned adjacent to the Milne Land–Renland region. This divide separated the catchments that flowed north to the Boreal Ocean from those that flowed south into a series of endoreic basins and, ultimately, the Tethys Sea. A further potential drainage divide is identified to the west of Shetland. The data presented and the conclusions reached have major implications for reservoir prediction, as well as correlation, throughout the region. Furthermore, understanding the drainage networks that existed during the Triassic can help constrain paleogeographic reconstructions and provides an important framework for the construction of facies models in the region.


2012 ◽  
Vol 49 (12) ◽  
pp. 1540-1557 ◽  
Author(s):  
David J.W. Piper ◽  
Georgia Pe-Piper ◽  
Mike Tubrett ◽  
Stavros Triantafyllidis ◽  
Greg Strathdee

Sources of Tithonian–Albian sediment in the Scotian Basin are interpreted from detrital zircon geochronology to test previous hypotheses about the sources and pathways of sediment to thick deltaic successions that are important hydrocarbon reservoirs. Sediment provenance influences reservoir quality, but also provides information on tectonism during rifting of the North Atlantic Ocean. More than 760 zircons were dated by laser ablation U–Pb methods from nine offshore wells and one borehole on land and were characterized by external morphology, internal zoning, and Th/U ratio. A Meguma terrane source to the LaHave Platform was confirmed by peaks in detrital zircon abundance at 550–650 Ma, 1.0–1.2 Ga, and ∼2.1 Ga. Samples from the Sable Subbasin show a large peak in detrital zircon abundance at ∼1050 Ma, with lower peaks from 400–650, ∼1480, ∼1650, ∼1860 Ma and 2.7 Ga, characteristic of inboard Appalachian terranes of Laurentide affinity. Many late Paleozoic to Neoproterozoic zircons are euhedral or subhedral, and apparently first cycle, as are a few older zircons that indicate transport from the rising rift shoulder in southern Labrador as far north as the Makkovik Province (∼1860 Ma). About half the zircons are rounded and polycyclic. Samples from the Abenaki Subbasin are similar, but late Paleozoic to Neoproterozoic zircons are rare and ∼40% of the Mesoproterozoic zircons are subhedral, implying a different Laurentide source through the Humber valley. Euhedral–subhedral unzoned zircons yielded two groups of Cretaceous dates: ∼105 Ma from the Cree Member, and ∼120 Ma from the Missisauga Formation.


Geology ◽  
2021 ◽  
Author(s):  
Timothy M. Gibson ◽  
Karol Faehnrich ◽  
James F. Busch ◽  
William C. McClelland ◽  
Mark D. Schmitz ◽  
...  

Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries.


Sign in / Sign up

Export Citation Format

Share Document