scholarly journals Supplemental Material: Crustal material recycling induced by subduction erosion and subduction-channel exhumation: A case study of central Tibet (western China) based on P-T-t paths of the eclogite-bearing Baqing metamorphic complex

2020 ◽  
Author(s):  
Xin Jin ◽  
Yu-Xiu Zhang ◽  
Kai-Jun Zhang ◽  
et al.

Compositional mapping images of one garnet, Triassic paleo-geographic facies of Qiangtang, summarized published Paleozoic and Proterozoic ages in Tibetan Plateau and Himalaya, mineral compositions, and chronology data of the Baqing metamorphic rocks.

2020 ◽  
Author(s):  
Xin Jin ◽  
Yu-Xiu Zhang ◽  
Kai-Jun Zhang ◽  
et al.

Compositional mapping images of one garnet, Triassic paleo-geographic facies of Qiangtang, summarized published Paleozoic and Proterozoic ages in Tibetan Plateau and Himalaya, mineral compositions, and chronology data of the Baqing metamorphic rocks.


Author(s):  
Xin Jin ◽  
Yu-Xiu Zhang ◽  
Donna L. Whitney ◽  
Kai-Jun Zhang ◽  
Natalie H. Raia ◽  
...  

Subduction and exhumation processes, interacting with each other, play a key role in crustal recycling. Downgoing oceanic lithosphere constitutes the dominant input at subduction margins, but subduction erosion, the removal of crustal material from the overriding plate, may add additional ingredients and complexity to the subduction factory. Different exhumation models have been proposed to explain how subducted materials are exhumed and therefore contribute to crustal recycling, e.g., exhumation up the subduction channel versus diapiric rise through the mantle wedge that overlies the subducted plate. The recently discovered Baqing eclogite-bearing high-pressure metamorphic complex, central Tibet, China, provides an excellent opportunity to decode the exhumation process, the origin of subduction-related magmatism, and the crustal structure of the North Qiangtang block, in addition to elucidating processes of crustal recycling. Pressure-temperature-time (P-T-t) paths and zircon U-Pb ages and trace-element compositions for Baqing high-pressure rocks were used to evaluate exhumation processes and to determine the geochemical and tectonic affinity of the Baqing metamorphic complex. The Baqing metamorphic complex is mainly composed of eclogite, gneiss, and schist. It is located between two geologically distinct terranes—the South Qiangtang block, which has early Paleozoic basement, and the North Qiangtang block, which has Proterozoic basement. In the schist, zircon cores with steep heavy rare earth element (HREE) slopes and oscillatory zoning yielded inherited ages that are similar to detrital zircon ages for the South Qiangtang block schist; in contrast, zircon rims with flat HREE slopes yielded metamorphic ages of 224 Ma that are similar to the metamorphic ages obtained for the Baqing eclogite. In contrast, zircons from the gneiss yielded an upper-intercept age of 1033 ± 32 Ma (interpreted as the crystallization age) and a lower-intercept metamorphic age of 198 ± 4 Ma. Field relations indicate that gneiss and eclogite/amphibolite were exhumed together, so the ∼20 m.y. gap between the gneiss and the metabasite metamorphism may indicate a long exhumation duration. In the region, Proterozoic ages of ca. 1000 Ma are known only from the North Qiangtang block; we thus propose that the Baqing gneiss originated from North Qiangtang block Proterozoic basement, which, along with North Qiangtang block Triassic arc magmatic rocks and the discrepancies between ancient and current arc-trench distances, results in estimates of ∼20−170 km of Triassic subduction erosion. Results of P-T analyses show that most eclogite, amphibolite, and schist shared a similar clockwise P-T path, different from that of the gneiss, which records a higher geothermal gradient. The clockwise P-T trajectory, long exhumation duration, lack of significant heating during exhumation, and the South Qiangtang block affinity of the schist (host rock of the Baqing eclogite) are consistent with subduction-channel exhumation rather than diapiric rise through the mantle wedge. Geochemical similarities between the North Qiangtang block Triassic subduction-related rocks and the Baqing gneiss may signal the involvement of unexhumed Baqing metamorphic complex in the recycling of the Qiangtang crust.


2021 ◽  
Author(s):  
Zong-Yong Yang ◽  
QIANG WANG ◽  
et al.

Supplemental figures, analytical methods and results, and data and results tables.<br>


Geology ◽  
2021 ◽  
Author(s):  
Zong-Yong Yang ◽  
Qiang Wang ◽  
Lu-Lu Hao ◽  
Derek A. Wyman ◽  
Lin Ma ◽  
...  

Subduction erosion is important for crustal material recycling and is widespread in modern active convergent margins. However, such a process is rarely identified in fossil convergent systems, which casts doubt on the importance of subduction erosion through the geological record. We report on ca. 155 Ma Kangqiong (pluton) intrusive rocks of a Mesozoic magmatic arc in the southern Qiangtang terrane, central Tibet. These rocks mainly consist of trondhjemites and tonalites and are similar to slab-derived adakites with mantle-like zircon oxygen isotope compositions (δ18O = 5.2‰–5.6‰), they display more evolved Sr-Nd isotopes and higher Th/La relative to mid-oceanic ridge basalts from the Bangong-Nujiang suture, and they contain abundant amphibole and biotite. These characteristics indicate magma generation via H2O-fluxed melting of eroded forearc crust debris with subducted oceanic crust at 1.5–2.5 GPa and 700–800 °C. In addition, the intrusions are exposed &lt;20 km north of the Bangong-Nujiang suture. Given the formation of adakites, narrow arc-suture distance, migration of the Jurassic frontal arc toward the continent interior, and other independent geological archives, we suggest that the hydrated forearc crust materials were removed from the overlying plate and carried into the mantle by subduction erosion. Our study provides the first direct magmatic evidence for a subduction erosion process in pre-Cenozoic convergent systems, which confirms an important role for such processes in subduction-zone material recycling.


2021 ◽  
Author(s):  
Zong-Yong Yang ◽  
QIANG WANG ◽  
et al.

Supplemental figures, analytical methods and results, and data and results tables.<br>


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 193
Author(s):  
Fenli Chen ◽  
Mingjun Zhang ◽  
Athanassios A. Argiriou ◽  
Shengjie Wang ◽  
Qian Ma ◽  
...  

The deuterium excess in precipitation is an effective indicator to assess the existence of sub-cloud evaporation of raindrops. Based on the synchronous measurements of stable isotopes of hydrogen and oxygen (δ2H and δ18O) in precipitation for several sites in Lanzhou, western China, spanning for approximately four years, the variations of deuterium excess between the ground and the cloud base are evaluated by using a one-box Stewart model. The deuterium excess difference below the cloud base during summer (−17.82‰ in Anning, −11.76‰ in Yuzhong, −21.18‰ in Gaolan and −12.41‰ in Yongdeng) is greater than that in other seasons, and difference in winter is weak due to the low temperature. The variations of deuterium excess in precipitation due to below-cloud evaporation are examined for each sampling site and year. The results are useful to understand the modification of raindrop isotope composition below the cloud base at a city scale, and the quantitative methods provide a case study for a semi-arid region at the monsoon margin.


Landslides ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 347-362 ◽  
Author(s):  
Z. X. Yu ◽  
L. Zhao ◽  
Y. P. Liu ◽  
S. C. Zhao ◽  
H. Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document