scholarly journals Along-strike variations in sediment provenance within the Nanaimo basin reveal mechanisms of forearc basin sediment influx events

Lithosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180-197 ◽  
Author(s):  
Daniel S. Coutts ◽  
William A. Matthews ◽  
Rebecca G. Englert ◽  
Morgan D. Brooks ◽  
Marie-Pier Boivin ◽  
...  

Abstract The along-strike variability in sediment provenance within the Nanaimo basin is important for understanding the tectonic evolution of North America’s Late Cretaceous Pacific margin, providing context for paleogeographic reconstructions. Here, we provide 35 point-counted sandstone samples and 22 new detrital zircon samples from the Nanaimo basin. These new detrital zircon samples compose a portion of a basin-wide data set (N = 49, n = 10,942) that is leveraged to discern spatio-temporal changes in sediment provenance. Provenance data demonstrates that the majority of Nanaimo basin strata were sourced from regions within and east of the Coast Mountains Batholith, while only the southernmost Nanaimo basin, exposed in the San Juan Islands, was supplied sediment from the North Cascade thrust system. Additionally, near-identical age modes and synchronous changes in detrital zircon facies are used to hypothesize a correlation between the Nanaimo Group and the protolith of the Swakane Gneiss. These observations, along with previously identified events in the Cordillera, are used to define two basin-wide events that affected the Nanaimo basin: the first at 84 Ma and the second at 72 Ma. The first event is correlated to the onset of Kula-Farallon spreading, which affected basin subsidence, introduced Proterozoic detrital zircon to the central and southern Nanaimo basin, and uplifted the North Cascade thrust system. The second basin-wide event, which is speculated to have been driven by increased rates of subduction and obliquity, resulted in localized high-flux events in the arc, increased exhumation of the Cascade Crystalline Core, underplating of the Swakane Gneiss, and coarse-grained sedimentation across the basin. The data presented here provides added context for the evolution of the basin and provides insight into the protracted geodynamics of forearc basins undergoing oblique subduction.

2017 ◽  
Vol 5 (3) ◽  
pp. SK141-SK159 ◽  
Author(s):  
Alan Patrick Bischoff ◽  
Andrew Nicol ◽  
Mac Beggs

The interaction between magmatism and sedimentation creates a range of petroleum plays at different stratigraphic levels due to the emplacement and burial of volcanoes. This study characterizes the spatio-temporal distribution of the fundamental building blocks (i.e., architectural elements) of a buried volcano and enclosing sedimentary strata to provide insights for hydrocarbon exploration in volcanic systems. We use a large data set of wells and seismic reflection surveys from the offshore Taranaki Basin, New Zealand, compared with outcropping volcanic systems worldwide to demonstrate the local impacts of magmatism on the evolution of the host sedimentary basin and petroleum system. We discover the architecture of Kora volcano, a Miocene andesitic polygenetic stratovolcano that is currently buried by more than 1000 m of sedimentary strata and hosts a subcommercial discovery within volcanogenic deposits. The 22 individual architectural elements have been characterized within three main stratigraphic sequences of the Kora volcanic system. These sequences are referred to as premagmatic (predate magmatism), synmagmatic (defined by the occurrence of intrusive, eruptive, and sedimentary architectural elements), and postmagmatic (degradation and burial of the volcanic structures after magmatism ceased). Potential petroleum plays were identified based on the distribution of the architectural elements and on the geologic circumstances resulting from the interaction between magmatism and sedimentation. At the endogenous level, emplacement of magma forms structural traps, such as drag folds and strata jacked up above intrusions. At the exogenous level, syneruptive, intereruptive, and postmagmatic processes mainly form stratigraphic and paleogeomorphic traps, such as interbedded volcano-sedimentary deposits, and upturned pinchout of volcanogenic and nonvolcanogenic coarse-grained deposits onto the volcanic edifice. Potential reservoirs are located at systematic vertical and lateral distances from eruptive centers. We have determined that identifying the architectural elements of buried volcanoes is necessary for building predictive models and for derisking hydrocarbon exploration in sedimentary basins affected by magmatism.


2020 ◽  
Vol 132 (9-10) ◽  
pp. 2135-2153 ◽  
Author(s):  
Chaohui Liu ◽  
Guochun Zhao ◽  
Fulai Liu ◽  
Jianrong Shi ◽  
Lei Ji

Abstract Statherian through Tonian strata of the Langshan–Zha’ertai–Bayan Obo–Huade rift zone (LZBH) at the northern margin of the North China Craton provide an excellent record of changes in sediment provenance related to the supercontinent dispersal and amalgamation. During the late Paleoproterozoic to early Neoproterozoic, the LZBH developed over the Yinshan Block and was flanked by the Khondalite Belt to the south, the Trans–North China Orogen and Yanliao rift zone to the east, ultimately preserving a >7000-m-sequence of fluvial, marginal marine, and offshore marine sediments. In order to decipher the influence of these tectonic features on sediment delivery to the area, we evaluated 4955 U-Pb and 1616 Lu-Hf analyses from 66 samples across the entire LZBH, of which 1002 U-Pb and 271 Lu-Hf analyses from 12 samples are newly reported herein. The detrital zircon results indicate three stratigraphic intervals with internally consistent age peaks: (1) Changcheng to lower Jixian system (Statherian–lower Calymmian), (2) upper Jixian system (upper Calymmian), and (3) Qingbaikou system (Tonian). Statistical analysis of the detrital zircon results reveals two distinct changes in sediment provenance. The first transition, between the lower and upper Calymmian, reflects a provenance change from the basement of the Yinshan Block and the Khondalite Belt to a mixed signature, indicating derivation from both basement and Statherian rift-related magmatic products. Such a transition implies establishment of east–west drainage systems traversing the Paleoproterozoic Trans–North China Orogen caused by continued rifting since Statherian and pre-magmatic uplift during breakup of the North China Craton from the Columbia supercontinent. The second transition is indicated by the presence of Mesoproterozoic detrital zircons with juvenile Hf isotopic features since Tonian time and the up-section and northward increase of Mesoproterozoic detrital zircons. Their provenance is interpreted to be the Fennoscandian shield by a pancontinental drainage system related to aggregation of the Rodinia supercontinent. Thus, the detrital zircon spectra in the LZBH document the transition from initial unroofing of local uplifted basement of the Yinshan Block and Khondalite Belt to the distant Yanliao rift zone, then to the more distant Fennoscandian shield.


Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1208-1224
Author(s):  
William M. Rittase ◽  
J. Douglas Walker ◽  
Joe Andrew ◽  
Eric Kirby ◽  
Elmira Wan

Abstract Exposed Pliocene–Pleistocene terrestrial strata provide an archive of the spatial and temporal development of a basin astride the sinistral Garlock fault in California. In the southern Slate Range and Pilot Knob Valley, an ∼2000-m-thick package of Late Cenozoic strata has been uplifted and tilted to the northeast. We name this succession the formation of Pilot Knob Valley and provide new chronologic, stratigraphic, and provenance data for these rocks. The unit is divided into five members that record different source areas and depositional patterns: (1) the lowest exposed strata are conglomeratic rocks derived from Miocene Eagle Crags volcanic field to the south and east across the Garlock fault; (2) the second member consists mostly of fine-grained rocks with coarser material derived from both southern and northern sources; and (3) the upper three members are primarily coarse-grained conglomerates and sandstones derived from the adjacent Slate Range to the north. Tephrochronologic data from four ash samples bracket deposition of the second member to 3.6–3.3 Ma and the fourth member to between 1.1 and 0.6 Ma. A fifth tephrochronologic sample from rocks south of the Garlock fault near Christmas Canyon brackets deposition of a possible equivalent to the second member of the formation of Pilot Knob Valley at ca. 3.1 Ma. Although the age of the base of the lowest member is not directly dated, regional stratigraphic and tectonic associations suggest that the basin started forming ca. 4–5 Ma. By ca. 3.6 Ma, the northward progradation fanglomerate sourced in the Eagle Crags region waned, and subsequent deposition occurred in shallow lacustrine systems. At ca. 3.3 Ma, southward progradation of conglomerates derived from the Slate Range began. Circa 1.1 Ma, continued southward progradation of fanglomerate with Slate Range sources is characterized by a shift to coarser grain sizes, interpreted to reflect uplift of the Slate Range. Overall, basin architecture and the temporal evolution of different source regions were controlled by activity on three regionally important faults—the Garlock, the Marine Gate, and the Searles Valley faults. The timing and style of motions on these faults appear to be directly linked to patterns of basin development.


2021 ◽  
pp. jgs2021-070
Author(s):  
Isabel C. Zutterkirch ◽  
Christopher L. Kirkland ◽  
Milo Barham ◽  
Chris Elders

Detrital zircon U-Pb geochronology has enabled advances in the understanding of sediment provenance, transportation pathways, and the depositional age of sedimentary packages. However, sample selection and processing can result in biasing of detrital zircon age spectra. This paper presents a novel approach using in-situ detrital zircon U-Pb measurements on thin-sections to provide greater confidence in maximum depositional ages and provenance interpretations. New U-Pb age data of 310 detrital zircon grains from 16 thin-sections of the Triassic Mungaroo Formation from two wells in the Northern Carnarvon Basin, Australia, are presented. Whilst detrital zircon age modes are consistent with previous work, there are some differences in the relative proportions of age modes, which is partly attributed to a lack of small grains in hand-picked grain mounts. The relative sample bias is quantified via grain size comparison of dated zircon (in thin-sections or hand-picked mounts) relative to all zircons identified in bulk-mounts and thin-sections. The youngest age mode (∼320 – 195 Ma) is consistent with an active margin to the north, likely South West Borneo and/or Lhasa terrane. The dated zircons reveal a maximum depositional age of 197 Ma for the upper part of Mungaroo Formation, suggesting deposition continued into the Early Jurassic.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5628911


2012 ◽  
Vol 49 (12) ◽  
pp. 1540-1557 ◽  
Author(s):  
David J.W. Piper ◽  
Georgia Pe-Piper ◽  
Mike Tubrett ◽  
Stavros Triantafyllidis ◽  
Greg Strathdee

Sources of Tithonian–Albian sediment in the Scotian Basin are interpreted from detrital zircon geochronology to test previous hypotheses about the sources and pathways of sediment to thick deltaic successions that are important hydrocarbon reservoirs. Sediment provenance influences reservoir quality, but also provides information on tectonism during rifting of the North Atlantic Ocean. More than 760 zircons were dated by laser ablation U–Pb methods from nine offshore wells and one borehole on land and were characterized by external morphology, internal zoning, and Th/U ratio. A Meguma terrane source to the LaHave Platform was confirmed by peaks in detrital zircon abundance at 550–650 Ma, 1.0–1.2 Ga, and ∼2.1 Ga. Samples from the Sable Subbasin show a large peak in detrital zircon abundance at ∼1050 Ma, with lower peaks from 400–650, ∼1480, ∼1650, ∼1860 Ma and 2.7 Ga, characteristic of inboard Appalachian terranes of Laurentide affinity. Many late Paleozoic to Neoproterozoic zircons are euhedral or subhedral, and apparently first cycle, as are a few older zircons that indicate transport from the rising rift shoulder in southern Labrador as far north as the Makkovik Province (∼1860 Ma). About half the zircons are rounded and polycyclic. Samples from the Abenaki Subbasin are similar, but late Paleozoic to Neoproterozoic zircons are rare and ∼40% of the Mesoproterozoic zircons are subhedral, implying a different Laurentide source through the Humber valley. Euhedral–subhedral unzoned zircons yielded two groups of Cretaceous dates: ∼105 Ma from the Cree Member, and ∼120 Ma from the Missisauga Formation.


2007 ◽  
Vol 44 (3) ◽  
pp. 297-316 ◽  
Author(s):  
JoAnne Nelson ◽  
George Gehrels

Two samples of late Paleozoic grit and Late Mississippian quartzite–chert conglomerate collected from southeastern Yukon–Tanana terrane (YTT) — a composite thrust sheet resting structurally above North American parautochthonous strata and intervening imbricate sheets of the late Paleozoic oceanic Slide Mountain terrane — yielded, respectively, 89 and 74 concordant or nearly concordant (<20% discordant) U–Pb ages on single detrital zircons. They provide constraints on the provenance of this allochthonous pericratonic terrane. Zircons in the grit range from 1770 to 2854 Ma, with a well-defined Early Proterozoic peak between 1800 and 2100 Ma. Precambrian zircons in the conglomerate also show a dominant peak between 1800 and 2100 Ma and smaller peaks between 2200 and 3200 Ma, with a few older grains, and younger grains with ages of 998, 1219, 1255, 1256, and 1417 Ma. The conglomerate also yielded three Devonian grains, with ages of 366 ± 23, 373 ± 12, and 379 ± 23 Ma. Their ages are approximately coeval with the oldest felsic to intermediate arc- and rift-related magmatism in the YTT. The age spectra from southeastern YTT units compare closely with those from Mississippian and older pericratonic units in the Coast Mountains, confirming correlations previously made on lithologic grounds. They also strongly resemble detrital zircon populations from craton-derived Paleozoic units of the northern North American autochthon. This robust U–Pb data set lends support to the idea that YTT once formed part of the outer, active margin of the North American continent, prior to Mississippian rifting and marginal ocean basin development.


Lithosphere ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 620-642 ◽  
Author(s):  
Zachary T. Sickmann ◽  
Theresa M. Schwartz ◽  
Matthew A. Malkowski ◽  
Stephen C. Dobbs ◽  
Stephan A. Graham

Abstract The Magallanes-Austral retroarc foreland basin of southernmost South America presents an excellent setting in which to examine interpretive methods for large detrital zircon data sets. The source regions for retroarc foreland basins generally, and the Magallanes-Austral Basin specifically, can be broadly divided into (1) the magmatic arc, (2) the fold-and-thrust belt, and (3) sources around the periphery of foreland flexural subsidence. In this study, we used an extensive detrital zircon data set (30 new, 87 previously published samples) that is complemented by a large modal provenance data set of 183 sandstone petrography samples (32 new, 151 previously published) and rare earth element geochemical analyses (130 previously published samples) to compare the results of empirical (multidimensional scaling) and interpretive (age binning based on source regions) treatments of detrital zircon data, ultimately to interpret the detailed evolution of sediment dispersal patterns and their tectonic controls in the Magallanes-Austral Basin. Detrital zircon sample groupings based on both a priori age binning and multidimensional scaling are required to maximize the potential of the Magallanes-Austral Basin data set. Multidimensional scaling results are sensitive to differences in major unimodal arc-related U-Pb detrital zircon ages and less sensitive to differences in multimodal, thrust belt–related age peaks. These sensitivities complicate basin-scale interpretations when data from poorly understood, less densely sampled sectors are compared to data from better-understood, more densely sampled sectors. Source region age binning alleviates these biases and compares well with multidimensional scaling results when samples from the less well-understood southern basin sector are excluded. Sample groupings generated by both multidimensional scaling and interpretive methods are also compatible with compositional provenance data. Together, this integration of provenance data and methods facilitates a detailed interpretation of sediment dispersal patterns and their tectonic controls for the Late Cretaceous to Eocene fill of the Magallanes-Austral retroarc foreland basin. We interpret that provenance signatures and dispersal patterns during the retroarc foreland phase were fundamentally controlled by conditions set by a predecessor extensional basin phase, including (1) variable magnitude of extension with latitude, (2) the composition of lithologies emplaced on the antecedent western flank, and (3) long-lasting structural discontinuities associated with early rifting that may have partitioned dispersal systems or controlled the location of long-lived drainage networks.


2021 ◽  
Author(s):  
Willem Schetselaar ◽  
David Schneider ◽  
Gabor Tari ◽  
Hoby Raharisolofo ◽  
Sophie Rahajarivelo ◽  
...  

&lt;p&gt;Formation of the Phanerozoic basins of Madagascar coincided with the initial stages of Permian break-up of Gondwana. The sources of the sediments in these basins are from the seven major Precambrian terranes that border them. The tectonic history of rifting, drifting, and uplift of the Madagascan terrane over the last 300 million years is recorded within the sedimentary strata that comprise the Morondava Basin, the largest of these basins located along the west coast. In this study, we have applied detrital zircon U-Pb geochronology and (U-Th)/He low-temperature thermochronology to resolve the sedimentation patterns and thermal history of the Morondava Basin as Madagascar separated from Africa and subsequently India. Nine coarse-grained siliciclastic samples were taken along two transects parallel to the Morondava River in the central Morondava Basin. Karoo sandstones and shales were deposited directly atop the basement during Permo-Triassic rifting. Two samples from each transect were taken in the uppermost Jurassic Karoo sandstones. Overlying the Karoo are carbonates that were deposited as part of a carbonate platform as the basin experienced Middle Jurassic subsidence due to successful rifting during the separation of Madagascar and Africa. A Late Jurassic unconformity suggests tectonic quiescence. As the passive margin subsidence renewed, changes in eustatic sea level resulted in several cycles of sedimentation, and two Cretaceous samples in each transect were collected from this interval. Separation of India from Madagascar during the Turonian resulted in uplift of the central highlands and tilting of the Morondava Basin accompanied by extensive volcanic activity throughout the basin. Previously published apatite fission track studies mark this as the final stage of cooling. Above a Paleocene unconformity, deposition occurred in the Eocene with a package of sandstones and shales represented by a single sample in the southern transect. The detrital zircon U-Pb age distributions include common Neoarchean and Neoproterozoic populations which suggests input from the basement terranes of the Madagascan central highlands (Antananarivo domain). A subset of samples contain a Paleo- to Mesoarchean population linked to the metasedimentary Anosyen domain and a Cambrian population associated with metamorphic zircon formed during the Pan-African Orogeny the source of which occurs in the southwestern basement terranes. Spatial variations within the detrital zircon U-Pb age populations indicate two distinct sedimentation patterns separating the north and south parts of the basin and a likely post-Jurassic sediment recycling history within the Morondava Basin. Initial zircon (U-Th)/He ages range from 500 to 80 Ma with effective uranium (eU) values ranging from 35 to 1760, which exhibit a strong negative eU-age relationship and indicate partial resetting of zircon throughout the basin. The combined data will be utilized to construct the low-temperature thermal history of the basin.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document