Detrital zircon geochronology and provenance of the southeastern Yukon–Tanana terrane

2007 ◽  
Vol 44 (3) ◽  
pp. 297-316 ◽  
Author(s):  
JoAnne Nelson ◽  
George Gehrels

Two samples of late Paleozoic grit and Late Mississippian quartzite–chert conglomerate collected from southeastern Yukon–Tanana terrane (YTT) — a composite thrust sheet resting structurally above North American parautochthonous strata and intervening imbricate sheets of the late Paleozoic oceanic Slide Mountain terrane — yielded, respectively, 89 and 74 concordant or nearly concordant (<20% discordant) U–Pb ages on single detrital zircons. They provide constraints on the provenance of this allochthonous pericratonic terrane. Zircons in the grit range from 1770 to 2854 Ma, with a well-defined Early Proterozoic peak between 1800 and 2100 Ma. Precambrian zircons in the conglomerate also show a dominant peak between 1800 and 2100 Ma and smaller peaks between 2200 and 3200 Ma, with a few older grains, and younger grains with ages of 998, 1219, 1255, 1256, and 1417 Ma. The conglomerate also yielded three Devonian grains, with ages of 366 ± 23, 373 ± 12, and 379 ± 23 Ma. Their ages are approximately coeval with the oldest felsic to intermediate arc- and rift-related magmatism in the YTT. The age spectra from southeastern YTT units compare closely with those from Mississippian and older pericratonic units in the Coast Mountains, confirming correlations previously made on lithologic grounds. They also strongly resemble detrital zircon populations from craton-derived Paleozoic units of the northern North American autochthon. This robust U–Pb data set lends support to the idea that YTT once formed part of the outer, active margin of the North American continent, prior to Mississippian rifting and marginal ocean basin development.

2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

&lt;p&gt;The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 &amp;#177; 4 Ma to 2827 &amp;#177; 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 &amp;#177; 9 Ma to 288 &amp;#177; 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed &amp;#8220;Carboniferous&amp;#8221; strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East &amp;#173;Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon &amp;#603;&lt;sub&gt;Hf&lt;/sub&gt;(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon &amp;#603;&lt;sub&gt;Hf&lt;/sub&gt;(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).&lt;/p&gt;


Author(s):  
Luca Zurli ◽  
Gianluca Cornamusini ◽  
Jusun Woo ◽  
Giovanni Pio Liberato ◽  
Seunghee Han ◽  
...  

The Lower Permian tillites of the Beacon Supergroup, cropping out in Victoria Land (Antarctica), record climatic history during one of the Earth’s coldest periods: the Late Paleozoic Ice Age. Reconstruction of ice-extent and paleo-flow directions, as well as geochronological and petrographic data, are poorly constrained in this sector of Gondwana. Here, we provide the first detrital zircon U-Pb age analyses of both the Metschel Tillite in southern Victoria Land and some tillites correlatable with the Lanterman Formation in northern Victoria Land to identify the source regions of these glaciogenic deposits. Six-hundred detrital zircon grains from four diamictite samples were analyzed using laser ablation−inductively coupled plasma−mass spectrometry. Geochronological and petrographic compositional data of the Metschel Tillite indicate a widespread reworking of older Devonian Beacon Supergroup sedimentary strata, with minor contribution from Cambro-Ordovician granitoids and meta-sedimentary units as well as Neoproterozoic metamorphic rocks. Euhedral to subhedral Carboniferous−Devonian zircon grains match coeval magmatic units of northern Victoria Land and Marie Byrd Land. This implies, in accordance with published paleo-ice directions, a provenance from the east-southeast sectors. In contrast, the two samples from northern Victoria Land tillite reflect the local basement provenance; their geochronological age and petrographic composition indicates a restricted catchment area with multiple ice centers. This shows that numerous ice centers were present in southern Gondwana during the Late Paleozoic Ice Age. While northern Victoria Land hosted discrete glaciers closely linked with the northern Victoria Land-Tasmania ice cap, the west-northwestward flowing southern Victoria Land ice cap contributed most of the sediments comprising the Metschel Tillite.


1991 ◽  
Vol 28 (8) ◽  
pp. 1285-1300 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett

Metamorphic rocks within and west of the northern Coast Mountains in southeastern Alaska consist of an Upper Proterozoic(?) to upper Paleozoic continental margin assemblage that we interpret to belong to the Yukon-Tanana terrane. U–Pb geochronologic analyses of single detrital zircon grains from four samples of quartzite suggest that the zircons were shed from source regions containing rocks of ~495 Ma, ~750 Ma, 1.05–1.40 Ga, 1.75–2.00 Ga, ~2.3 Ga, 2.5–2.7 Ga, and ~3.0 Ga. Multigrain fractions from two samples yield upper intercepts between 2.0 and 2.3 Ga, but the scarcity of single grains of similar age suggests that these fractions comprise a mixture of < 2.0 and > 2.3 Ga grains. Zircons in these rocks generally overlap in age with (i) detrital zircons in metasedimentary rocks of the Yukon–Tanana terrane in eastern Alaska and Yukon, (ii) detrital zircons in strata of the Cordilleran miogeocline, and (iii) plutonic and gneissic rocks that intrude or are overlain by miogeoclinal strata. In addition, the pre-1.7 Ga grains overlap in age with dated crystalline rocks of the western Canadian Shield. These similarities raise the possibility that metaclastic rocks in the northern Coast Mountains accumulated in proximity to western North America. The younger zircon populations were likely shed from mid-Proterozoic to early Paleozoic igneous rocks that now occur locally (but may have been widespread) along the Cordilleran margin. Recognition of a continental margin assemblage of possible North American affinity in the Coast Mountains raises the possibility that some arc-type and oceanic terranes inboard of the Coast Mountains may be large klippen that have been thrust over the North American margin.


Author(s):  
Julia I. Corradino ◽  
Alex Pullen ◽  
Andrew L. Leier ◽  
David L. Barbeau Jr. ◽  
Howie D. Scher ◽  
...  

The Bell River hypothesis proposes that an ancestral, transcontinental river occupied much of northern North America during the Cenozoic Era, transporting water and sediment from the North American Cordillera to the Saglek Basin on the eastern margin of the Labrador Sea. To explore this hypothesis and reconstruct Cenozoic North American drainage patterns, we analyzed detrital zircon grains from the Oligocene−Miocene Mokami and Saglek formations of the Saglek Basin and Oligocene−Miocene fluvial conglomerates in the Great Plains of western Canada. U-Pb detrital zircon age populations in the Mokami and Saglek formations include clusters at &lt;250 Ma, 950−1250 Ma, 1600−2000 Ma, and 2400−3200 Ma. Detrital zircons with ages of &lt;250 Ma were derived from the North American Cordillera, supporting the transcontinental Bell River hypothesis. Oligocene−Miocene fluvial strata in western Canada contain detrital zircon age populations similar to those in the Saglek Basin and are interpreted to represent the western headwaters of the ancient Bell River drainage. Strontium-isotope ratios of marine shell fragments from the Mokami and Saglek formations yielded ages between 25.63 and 18.08 Ma. The same shells have εNd values of −10.2 to −12.0 (average = −11.2), which are consistent with values of Paleozoic strata in western North America but are more radiogenic than the modern Labrador Current, Labrador Sea Water, and North Atlantic Deep Water values (εNd ∼−12 to −25). As a freshwater source, the existence and termination of the Bell River may have been important for Labrador Sea circulation, stratification, and chemistry.


2019 ◽  
Vol 131 (9-10) ◽  
pp. 1459-1479
Author(s):  
F.A. Robinson ◽  
J. Toro ◽  
V. Pease

AbstractThe Devonian connection between the Brooks Range of Alaska, USA, with the continental margin of Arctic Canada and its subsequent Jurassic–Cretaceous counterclockwise rotation to form the Amerasian Basin, is a highly debated topic in Arctic tectonics. This resource-rich region was assembled from terranes that formed part of Laurentia or Baltica, or were juvenile oceanic arcs in the early Paleozoic that were brought together during Caledonian Orogenesis and the subsequent collision that formed Pangea (Uralide Orogeny). Elements of these orogens, as well as older ones, are predicted to occur in the Brooks Range of Arctic Alaska. This study presents the first combined zircon U-Pb and oxygen data from six Brooks Range metasedimentary units with assumed Neoproterozoic to Devonian ages. Three distinct detrital zircon patterns are identified in these units: (1) those with Neoproterozoic maximum depositional ages characteristic of the Timanide Orogen of northern Baltica and adjacent parts of Siberia, (2) an almost unimodal Siluro–Ordovician (443.5 ± 2.3 Ma) detrital zircon population consistent with the oceanic Apoon arc believed to have existed off shore of northern Laurentia and to have accreted to the North Slope subterrane during the Caledonian event, and (3) those with Middle Devonian maximum depositional ages consistent with post-accretion extension during the final (Scandian) phase of Caledonian Orogenesis. Oxygen isotopes from the same zircons reveal minor to significant crustal contamination with approximately two thirds (n = 255/405) having δ18O values >5.9‰ (above the mantle field of 5.3 ± 0.6‰). Pattern 1 units exhibit a progressive increase in δ18O values throughout the Proterozoic (5.99 to 9.29‰) indicative of increasing crustal growth and Timanide age zircons yield average δ18O values of 7.18 ± 0.64‰ (n = 26) suggestive of more crustal influence than Caledonian age zircons, possibly reflecting northern Baltica signatures. The unimodal population in Pattern 2 yields average δ18O values of 5.49 ± 0.66‰ (n = 17) and 6.02 ± 0.27‰ (n = 23) prior to and during, respectively, the main Caledonian event and suggest derivation from Devonian juvenile arc sources possibly representing the initiation of the collision between Laurentia and Baltica. Similar to Pattern 1, the δ18O values associated with Pattern 3 show a progressive increase in δ18O values throughout the Proterozoic (5.00 to 9.39‰). However, Pattern 3 also exhibits a distinct juvenile fingerprint (6.13 ± 0.24‰, n = 51) during the main Caledonian event and a slight increase to 7.12 ± 1‰ (n = 7) in post-Caledonian zircons possibly suggest correlating with a post-accretion phase in which proximally sourced zircon-bearing detritus was deposited in extension-related basins marking the joining of Laurentia and Baltica.


2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


Paleobiology ◽  
2020 ◽  
pp. 1-14
Author(s):  
Michelle M. Casey ◽  
Erin E. Saupe ◽  
Bruce S. Lieberman

Abstract Geographic range size and abundance are important determinants of extinction risk in fossil and extant taxa. However, the relationship between these variables and extinction risk has not been tested extensively during evolutionarily “quiescent” times of low extinction and speciation in the fossil record. Here we examine the influence of geographic range size and abundance on extinction risk during the late Paleozoic (Mississippian–Permian), a time of “sluggish” evolution when global rates of origination and extinction were roughly half those of other Paleozoic intervals. Analyses used spatiotemporal occurrences for 164 brachiopod species from the North American midcontinent. We found abundance to be a better predictor of extinction risk than measures of geographic range size. Moreover, species exhibited reductions in abundance before their extinction but did not display contractions in geographic range size. The weak relationship between geographic range size and extinction in this time and place may reflect the relative preponderance of larger-ranged taxa combined with the physiographic conditions of the region that allowed for easy habitat tracking that dampened both extinction and speciation. These conditions led to a prolonged period (19–25 Myr) during which standard macroevolutionary rules did not apply.


2015 ◽  
Vol 15 (12) ◽  
pp. 6943-6958 ◽  
Author(s):  
E. Crosbie ◽  
J.-S. Youn ◽  
B. Balch ◽  
A. Wonaschütz ◽  
T. Shingler ◽  
...  

Abstract. A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012–2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm−3), highest in winter (430 cm−3) and have a secondary peak during the North American monsoon season (July to September; 372 cm−3). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm−3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82 % of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41 % (pre-monsoon) and 36 % (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could be possible in other locations with comparable climates and geography.


Sign in / Sign up

Export Citation Format

Share Document