The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II

2015 ◽  
Vol 80 (6) ◽  
pp. 662-673 ◽  
Author(s):  
A. V. Pigolev ◽  
V. V. Klimov
2007 ◽  
Vol 1767 (1) ◽  
pp. 88-105 ◽  
Author(s):  
Stefano Santabarbara ◽  
Giancarlo Agostini ◽  
Anna Paola Casazza ◽  
Christopher D. Syme ◽  
P. Heathcote ◽  
...  

2007 ◽  
Vol 85 (6) ◽  
pp. 721-729 ◽  
Author(s):  
Tessa Pocock ◽  
P. V. Sane ◽  
S. Falk ◽  
N. P.A. Hüner

Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 °C resulted in comparable downward shifts in the temperature peak maxima (TM) for S2QB– charge pair recombination events, with minimal changes in S2QA– recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB– charge pair recombination events with no concomitant change in the activation energy for S2QA– recombination events. This resulted in a decrease in the ΔTM between S2QA– and S2QB– recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 °C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the ΔTM between S2QA– and S2QB– recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light.


2009 ◽  
Vol 8 (11) ◽  
pp. 1648-1657 ◽  
Author(s):  
Anchalee Sirikhachornkit ◽  
Jai W. Shin ◽  
Irene Baroli ◽  
Krishna K. Niyogi

ABSTRACT Tocopherols (vitamin E) comprise a class of lipid-soluble antioxidants synthesized only in plants, algae, and some cyanobacteria. The majority of tocopherols in photosynthetic cells is in the α form, which has the highest vitamin E activity in humans, whereas the β, γ, and δ forms normally account for a small percentage of total tocopherols. The antioxidant activities of these forms of tocopherol differ depending on the experimental system, and their relative activities in vivo are unclear. In a screen for suppressors of the xanthophyll-deficient npq1 lor1 double mutant of Chlamydomonas reinhardtii, we isolated a vte3 mutant lacking α-tocopherol but instead accumulating β-tocopherol. The vte3 mutant contains a mutation in the homolog of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase gene found in plants. The vte3 npq1 lor1 triple mutant with β-tocopherol survived better under photooxidative stress than did the npq1 lor1 mutant, but the vte3 mutant on its own did not have an obvious phenotype. Following transfer from low light to high light, the triple mutant showed a higher efficiency of photosystem II, a higher level of cell viability, and a lower level of lipid peroxide, a marker for oxidative stress, than did the npq1 lor1 mutant. After high-light transfer, the level of the photosystem II reaction center protein, D1, was also higher in the vte3 npq1 lor1 mutant, but the rate of D1 photodamage was not significantly different from that of the npq1 lor1 mutant. Taken together, these results suggest that the replacement of α-tocopherol by β-tocopherol in a xanthophyll-deficient strain of Chlamydomonas reinhardtii contributes to better survival under conditions of photooxidative stress.


1984 ◽  
Vol 98 (1) ◽  
pp. 1-7 ◽  
Author(s):  
F A Wollman ◽  
P Delepelaire

We have used a new method to extensively modify the redox state of the plastoquinone pool in Chlamydomonas reinhardtii intact cells. This was achieved by an anaerobic treatment that inhibits the chlororespiratory pathway recently described by P. Bennoun (Proc. Natl. Acad. Sci. USA, 1982, 79:4352-4356). A state I (plus 3,4-dichlorophenyl-1,1-dimethylurea) leads to anaerobic state transition induced a decrease in the maximal fluorescence yield at room temperature and in the FPSII/FPSI ratio at 77 degrees K, which was three times larger than in a classical state I leads to state II transition. The fluorescence changes observed in vivo were similar in amplitude to those observed in vitro upon transfer to the light of dark-adapted, broken chloroplasts incubated in the presence of ATP. We then compared the phosphorylation pattern of thylakoid polypeptides in C. reinhardtii in vitro and in vivo using gamma-[32P]ATP and [32P]orthophosphate labeling, respectively. The same set of polypeptides, mainly light-harvesting complex polypeptides, was phosphorylated in both cases. We observed that this phosphorylation process is reversible and is mediated by the redox state of the plastoquinone pool in vivo as well as in vitro. Similar changes of even larger amplitude were observed with the F34 mutant intact cells lacking in photosystem II centers. The presence of the photosystem II centers is then not required for the occurrence of the plastoquinone-mediated phosphorylation of light-harvesting complex polypeptides.


2010 ◽  
Vol 431 (3) ◽  
pp. 345-352 ◽  
Author(s):  
James E. Godman ◽  
Attila Molnár ◽  
David C. Baulcombe ◽  
Janneke Balk

The genome of the green alga Chlamydomonas reinhardtii encodes two [FeFe]-hydrogenases, HydA1 and HydA2, and the hydrogenase-like protein HYD3. The unique combination of these proteins in one eukaryotic cell allows for direct comparison of their in vivo functions, which have not been established for HydA2 and HYD3. Using an artificial microRNA silencing method developed recently, the expression of HydA1, HydA2 and HYD3 was specifically down-regulated. Silencing of HydA1 resulted in 4-fold lower hydrogenase protein and activity under anaerobic conditions. In contrast, silencing of HydA2 or HYD3 did not affect hydrogen production. Cell lines with strongly (>90%) decreased HYD3 transcript levels grew more slowly than wild-type. The activity of aldehyde oxidase, a cytosolic Fe-S enzyme, was decreased in HYD3-knockdown lines, whereas Fe-S dependent activities in the chloroplast and mitochondria were unaffected. In addition, the HYD3-knockdown lines grew poorly on hypoxanthine, indicating impaired function of xanthine dehydrogenase, another cytosolic Fe-S enzyme. The expression levels of selected genes in response to hypoxia were unaltered upon HYD3 silencing. Together, our results clearly distinguish the cellular roles of HydA1 and HYD3, and indicate that HYD3, like its yeast and human homologues, has an evolutionary conserved role in the biogenesis or maintenance of cytosolic Fe-S proteins.


Sign in / Sign up

Export Citation Format

Share Document