Mechanism of formation of finely dispersed zinc oxide in homogeneous hydrolysis of zinc nitrate in the presence of hexamethylenetetramine

2009 ◽  
Vol 426 (1) ◽  
pp. 101-104 ◽  
Author(s):  
A. S. Shaporev ◽  
H. Zeng ◽  
V. K. Ivanov ◽  
Yu. D. Tret’yakov
1997 ◽  
Vol 127 (3) ◽  
pp. 292-299 ◽  
Author(s):  
Yukiko Hanzawa ◽  
Daisuke Hiroishi ◽  
Chihiro Matsuura ◽  
Kenkichi Ishigure ◽  
Masashi Nagao ◽  
...  

2014 ◽  
Vol 1024 ◽  
pp. 83-86 ◽  
Author(s):  
Mohamad Sahban Alnarabiji ◽  
Noorhana Yahya ◽  
Sharifa Bee Abd Hamid ◽  
Khairun Azizi Azizli ◽  
Afza Shafie ◽  
...  

Synthesising zinc oxide nanoparticles to get certain specific characteristics to be applied in Enhanced oil recovery (EOR) is still challenging to date. In this work, zinc oxide (ZnO) nanoparticles were synthesised using the sol-gel method by dissolving zinc nitrate hexahydrate in nitric acid. The ZnO crystal and particles morphology and structure were determined using X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). In this study, a microwave oven was used for annealing ZnO without insulating a sample in any casket. The results show that 30 and 40 minutes of annealing and stirring for 1 hour influenced the morphology and size of zinc oxide particles in nanoscale. These parameters could be tailored to generate a range of nanoparticle morphology (agglomerated nanoparticles in a corn-like morphology), a crystal size with the mean size of 70.5 and 74.9 nm and a main growth at the peak [10. EOR experiment were conducted by dispersing 0.10 wt% ZnO NPs in distilled water to form a ZnO nanofluid. Then the fluid was injected into the medium in the 3rd stage of the oil recovery to present EOR stage. It was found that ZnO nanofluid has the ability to extract 8% of the original oil in place (OOIP).


Author(s):  
Michael Neuland ◽  
Hans Allmendinger ◽  
Hans-Georg Pirkl ◽  
Robert J. West ◽  
Patrick M. Plehiers

2020 ◽  
Vol 12 (10) ◽  
pp. 1231-1235
Author(s):  
V. Sorna Gowri ◽  
Raj Kumar Sen ◽  
Sunil Kumar Sanghi ◽  
Avanish Kumar Srivastava

A series of novel Zinc Oxide (ZnO) copolymer composites films with different Zinc Oxide concentration were prepared through incorporation of pre-made Zinc Oxide particle in to copolymer epoxy poly(dimethyl acrylamide). The copolymer epoxy poly(dimethyl acrylamide) was synthesized by free radical polymerization to disperse the Zinc Oxide nanoparticles. The Zinc Oxide nanoparticles with the diameter of 19 nm–35 nm were synthesized from zinc nitrate via a wet chemical method. The aim of the work is to develop a new method/process/material for the dispersion of Zinc Oxide nanoparticles and testing the performance of these composites films. Thermo gravimetric analysis show that Zinc Oxide nanoparticles were successfully incorporated into the polymer matrix and the Zinc Oxide copolymer composites have a good thermal stability. The micro structural analysis also show newly synthesized polymer disperse the nanoparticles well as evidenced by Scanning Electron Microscopy (SEM) analysis. The uniformly dispersed Zinc Oxide nanoparticle in the polymer matrix and the particles almost remained in their original shape and size even after incorporation in the polymer matrix. Fourier transform infrared spectroscopy (FT-IR) shift of the copolymer adsorbed Zinc Oxide nanoparticles confirmed that polymer molecules chain was anchored on the surface of the nanoparticles.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


1995 ◽  
Vol 10 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Didier Jézéquel ◽  
Jean Guenot ◽  
Noureddine Jouini ◽  
Fernand Fiévet

A novel and easy route for preparing submicrometer particles of zinc oxide, involving hydrolysis of zinc salt in a polyol medium, is proposed. Zinc acetate dihydrate and diethyleneglycol appear to be the best candidates for obtaining a high yield of particles with well-defined morphological characteristics. Monodisperse spherical particles in the submicrometer range (0.2−0.4 μm) have been obtained for a salt concentration less than 0.1 mol 1−1. The particle size depends mainly on the heating rate. The particles are microporous (surface area: 80 m2 g−1) and are formed by aggregation of small crystallites (10 nm). Calcination at moderate temperature drastically reduces this porosity without significant interparticle sintering. At higher concentration, no aggregation occurs and tiny single crystallite particles are obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Albertus Bramantyo ◽  
Kenji Murakami ◽  
Masayuki Okuya ◽  
Arief Udhiarto ◽  
Nji Raden Poespawati

Arrays of zinc oxide (ZnO) nanorod (NR) were fabricated in a vertical axis direction through the two-step method of seed layer’s deposition and growth of the NR. The seed layer was applied by spin coating with a three-time repetition (n) and rotational speed (v) at 3000 rpm. After the seed layer had grown, ZnO NRs were grown with a growth solution made by combining one zinc source with one hydroxide source. There were two different zinc sources, i.e., zinc acetate dehydrate and zinc nitrate hexahydrate and, for comparison, zinc acetate (ZA) and zinc nitrate (ZN) were each combined with the same hydroxide source, hexamethylenetetramine (HMT). Later, the growth solutions were processed by the chemical bath deposition (CBD) method using a waterbath machine. The CBD method was started at room temperature until it reached the designated temperature at 85°C. At that point, the growth time was calculated from the zero-minute condition. It was found that ZnO NRs had already grown at a thickness of about 100 nm for both ZA and ZN sources. The growth time varied at 15, 60, 90, and 120 minutes after the zero-minute point. By using two separate and independent zinc sources while growing ZnO NRs at various growth periods, several ZnO NRs’ thicknesses were controlled. According to a paper by Lee et al., the lower thickness of ZnO NRs boosted the charge transfer properties of perovskite solar cells (PSCs) because the series resistance between ZnO/perovskite interfaces was lessened. Scanning electron microscopy (SEM) images were observed to analyze the morphological shape of the ZnO NRs. X-ray diffraction (XRD) profiles were characterized to obtain the data for ZnO NR crystallinity. Full width at half maximum (FWHM) analysis was performed at the (002) ZnO peak to calculate the crystal size of the peak. From the results, the smallest crystallite sizes for ZnO NRs grown from ZA and ZN sources were 10.70 nm and 19.29 nm, respectively, which would be the most suitable condition for PSC application.


2011 ◽  
Vol 364 ◽  
pp. 45-49 ◽  
Author(s):  
Azlinda Ab Azlinda ◽  
Zuraida Khusaimi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Zinc oxide (ZnO) nanostructures prepared by immersion method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as a precursor, separately stabilized with non-toxic urea (CH4N2O) and hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterized using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows clusters of ZnO nanoflower with serrated broad petals were interestingly formed. ZnO in HMTA showed growth of nanorods. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nanostructures is found to be significantly affected by the stabilizer.


Sign in / Sign up

Export Citation Format

Share Document