Microwave Synthesis of ZnO Nanoparticles for Enhanced Oil Recovery

2014 ◽  
Vol 1024 ◽  
pp. 83-86 ◽  
Author(s):  
Mohamad Sahban Alnarabiji ◽  
Noorhana Yahya ◽  
Sharifa Bee Abd Hamid ◽  
Khairun Azizi Azizli ◽  
Afza Shafie ◽  
...  

Synthesising zinc oxide nanoparticles to get certain specific characteristics to be applied in Enhanced oil recovery (EOR) is still challenging to date. In this work, zinc oxide (ZnO) nanoparticles were synthesised using the sol-gel method by dissolving zinc nitrate hexahydrate in nitric acid. The ZnO crystal and particles morphology and structure were determined using X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). In this study, a microwave oven was used for annealing ZnO without insulating a sample in any casket. The results show that 30 and 40 minutes of annealing and stirring for 1 hour influenced the morphology and size of zinc oxide particles in nanoscale. These parameters could be tailored to generate a range of nanoparticle morphology (agglomerated nanoparticles in a corn-like morphology), a crystal size with the mean size of 70.5 and 74.9 nm and a main growth at the peak [10. EOR experiment were conducted by dispersing 0.10 wt% ZnO NPs in distilled water to form a ZnO nanofluid. Then the fluid was injected into the medium in the 3rd stage of the oil recovery to present EOR stage. It was found that ZnO nanofluid has the ability to extract 8% of the original oil in place (OOIP).

2014 ◽  
Vol 354 ◽  
pp. 201-213 ◽  
Author(s):  
Mohamad Sahban Alnarabiji ◽  
Noorhana Yahya ◽  
Sharifah Bee Abdul Hamid ◽  
Khairun Azizi Azizli ◽  
Muhammad Kashif ◽  
...  

Synthesising zinc oxide nanoparticles (ZnO-NPs) to get certain characteristics to be applied in Enhanced Oil Recovery (EOR) is still challenging to date. In this work, the importance of high surface area of ZnO nanoparticles as EOR agent was highlighted. A simulation on density of state (DOS), band structure and adsorption energy of hydrogen and nitrogen gases on the surface of ZnO was carried out; it is observed that from the band structure of the band gap value for ZnO is 0.808ev. For the ZnO, Zn 4s states contribute to conduction band and O 2p states contribute to valence band. ZnO-NPs were synthesised using the sol-gel method by dissolving zinc nitrate hexahydrate in nitric acid and varying the stirring time (1 and 24h) and sintering time (30 and 40 min). A microwave oven was used for annealing ZnO without insulating the samples in any casket. The results show that 30 and 40 min of annealing and stirring for 1 & 24 h influenced the morphology and size of ZnO-NPs. These parameters could be tailored to generate a range of nanoparticle morphology (flask and/with agglomerated nanoparticles in a corn shape) obtained by Field Emission Scanning Electron Microscope (FESEM) and hexagonal crystal, determined by X-ray diffractometer (XRD), with the mean size of 70.5 & 74.9 nm and a main growth at the peak (101). The prepared sample via stirring for 24h and sintering for 40 min was chosen to prepare ZnO nanofluid because it has the highest surface area (BET) among the rest of samples, 0.23 m2/g. 10% of Original Oil In Place (OOIP) was recovered successfully to prove that ZnO is a good candidate to be applied in some chemical reactions. Moreover, it was found that ZnO is a promising catalyst for ammonia synthesis based on the adsorption energy of hydrogen and nitrogen gases (-1.05 and-1.60 kcal/mol respectively).


2015 ◽  
Vol 1109 ◽  
pp. 554-558
Author(s):  
Shafura Karim ◽  
Syukriyah Ismail ◽  
Saurdi Ishak ◽  
Najwa Ezira Ahmed Azhar ◽  
Ruziana Mohamed ◽  
...  

Tin-doped Zinc Oxide (Sn-doped ZnO) thin films were prepared using zinc nitrate hexahydrate as a starting material by sol-gel immersion method. Then the synthesized samples were characterized by current-voltage (I-V) measurement and FESEM. The Sn doping concentration were varied at 0.2 at.%, 0.4 at.%, 0.6 at.%, 0.8 at.% and 1.0 at.%. The result suggests that the optimum value for Sn doping concentration was 0.8 at.% which exhibited the highest conductive sample with value of 3.00 ×10-6 S/cm.


2019 ◽  
Vol 2 (1) ◽  
pp. 42-52
Author(s):  
Abdur Rehman ◽  
Saira Ahmad ◽  
Abdul Mateen ◽  
Huma Qamar ◽  
Mudaber Ahmad Mubashar ◽  
...  

Nanotechnology is the science, engineering and technology conducted at the scale that ranges between 1-100 nanometers. For the bio-application, evolution of nanotechnology is creating the concern of scientists towards the synthesis of nanoparticles. The nanoparticles have unique characteristics as compare to bulk materials. Zinc oxide (ZnO) is a matchless semiconductor and it has been under investigation due to its wide range of applications in various areas like biomedical, electronics, material science and optics. In the present work synthesis of ZnO nanoparticles was carried out by using simple chemical approach, Sol-gel method for being effective and inexpensive, by employing zinc acetate dehydrate Zn (CH3CO2)2.2H2O as a precursor and sodium hydroxide (NaOH) starch as a constant agent. The structural properties of resultant zinc oxide nanoparticles were investigated by X-ray diffraction (XRD) technique. The XRD data confirmed the hexagonal wurtzite structure of ZnO powder confirmed by JCPDS 36-1451 data. Particles size was calculated by Scherrer formula and calculated size was 30.14 nm. These nanoparticles were investigated for inhibition zone of bacterial strain Escherichia coli, a gram-negative microbe, at various concentrations of ZnO nanoparticles. Zinc oxide nanoparticles were very proficient for inhibition of growth of bacterial strain E. coli. The mechanism of ZnO NPs for antibacterial activity is release of reactive oxygen species which not only hydrolyze cell wall but cell membrane and cellular components as well providing a potential bactericidal effect.


2012 ◽  
Vol 585 ◽  
pp. 154-158 ◽  
Author(s):  
Sulaxna Sharma ◽  
Devendra Naik ◽  
Vijaya Agarwala

Nanometric zinc oxide was prepared by sol-gel method using two different capping agents e.g., ethylene diamine (EDA) and citric acid (CAM) in different solvents. Nanorods of ZnO was prepared by sol-gel method using zinc nitrate hexahydrate (1M). The as-synthesized samples were characterized using XRD, FESEM-EDAX, TG/DTA techniques. FESEM micrographs suggest that the formation of nanorods of ZnO takes place for EDA and CAM in MeOH after calcination at 150 °C and 170 °C, respectively for 12h. The antibacterial activity tests (also known as plus-minus tests) were done by allowing bacteria to grow normally in laboratory conditions, and also by subjecting to ZnO nanoparticles in the powder form. On comparison of the above two Petri plates, the presence of a zone of inhibition indicates the antibacterial nature, which would have not existed if the bacteria did not experience any adverse effects by the presence of the ZnO nanorods. In the present study, the activity tested against Escherichia coli ATCC 25922 (gram-negative) Micrococcus leuteus and Bacillus subtilis (gram-positive) the results suggest the selective activity of the nanoparticles against these species.


2015 ◽  
Vol 1109 ◽  
pp. 564-567
Author(s):  
Shafura Karim ◽  
Shafeena Mohd Saad ◽  
Saurdi Ishak ◽  
Najwa Ezira Ahmed Azhar ◽  
Ruziana Mohamed ◽  
...  

Tin-doped Zinc Oxide (Sn-doped ZnO) thin films were prepared using zinc nitrate hexahydrate as a starting material by sol-gel immersion method. The synthesized samples were characterized by current-voltage (I-V) measurement and Field Emission Scanning Electron Microscopy (FESEM). The Sn doping concentration were varied at 1.0 at.%, 2.0 at.%, 3.0 at.% and 4.0 at.%. FESEM images show that as the Sn concentration increased, the nanoparticles size of Sn-doped ZnO become denser and less grain boundary which might help in improvement of the electrical properties.


2018 ◽  
Vol 18 (3) ◽  
pp. 460-469
Author(s):  
Shaima'a J Kareem

In this paper, studying synthesis zinc oxide nanoparticles (ZnO NPs) via sol - gel methodand effect of adding polymer in preparation its solution. Zinc nitrate hexahydrate,Polyvinylpyrrolidone PVP, distilled water and sodium hydroxide (NaOH) were used asprecursor materials. Crystallization behavior of the ZnO was studied by X-ray diffraction(XRD). Nanoparticles phases can change from amorphous to wurtzite structure at thecalcination temperature (500 °C) and crystallite size by Scherrer’s formula about (21.131)nm for samples prepared with distilled water and (20.035)nm for samples prepared withdissolved PVP. Morphological and structural properties were investigated by scanningelectron microscopy (SEM). FT-IR spectra was indicated characteristic absorption bands ofZnO. UV-Vis absorption spectrum was shown a typical spectrum for ZnO nanoparticles.Finally, the results were shown the samples with dissolved PVP has smaller particles size,less agglomeration and narrow distribution but less purity phase when compared withsamples prepared with distilled water.


2013 ◽  
Vol 26 ◽  
pp. 101-110 ◽  
Author(s):  
Afza Shafie ◽  
Noorhana Yahya ◽  
Muhammad Kashif ◽  
Hasnah Mohd Zaid ◽  
Hasan Soleimani ◽  
...  

A major challenge for the oil industry is increasing the oil recovery from reservoirs. Nanofluid injection with the aid of electromagnetic (EM) waves can improve oil recovery. Nanoparticles of zinc oxide (ZnO) were synthesised using a sol-gel method and characterised using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Nanofluids of SWCNT and zinc oxide (ZnO) were used in this oil recovery study. It was observed that curved antennae with magnetic feeders gave a 472% larger D-field signal than those without magnetic feeders. The Dmol3 simulations showed that the band gap of ZnO is 1.088 eV, and the band gap of the SWCNT was 0.326 eV. The particle sizes of the ZnO nanoparticles were in the range of 30-39 nm. FESEM and HRTEM images showed that the samples were highly crystalline, and the grain size increased as the temperature increased. As a result, these nanoparticles were suitable for the preparation of the nanofluid and oil recovery applications. Oil recovery using 0.001% (w/w) ZnO nanofluid and EM was 16.10 % of OOIP, and using 0.01% SWNT nanofluid yielded an oil recovery of 23 ROIP %. These results imply that injecting a ZnO oxide nanofluid of 0.001% w/w coupled with a curved antenna and magnetic feeders has the potential to improve oil recovery in waterflooding systems.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1017
Author(s):  
Sarayut Pittarate ◽  
Julius Rajula ◽  
Afroja Rahman ◽  
Perumal Vivekanandhan ◽  
Malee Thungrabeab ◽  
...  

Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100–500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults’ emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.


Sign in / Sign up

Export Citation Format

Share Document