Local Time and Seasonal Variations in the Electron Density at the Ionospheric F2-Layer Maximum with Wave Disturbances under Low Solar Activity Conditions

2019 ◽  
Vol 59 (2) ◽  
pp. 185-198
Author(s):  
L. F. Chernogor
2020 ◽  
Vol 6 (3) ◽  
pp. 90-93
Author(s):  
Galina Kushnarenko ◽  
Olga Yakovleva ◽  
Galina Kuznetsova

We have estimated seasonal variations in the main thermospheric gas components [O]/[N₂] and [O₂]/[O] for the period 2014–2017. We have used the well-known authoring technique and electron density measurements made with the Irkutsk digisonde (52° N, 104° E) at ionospheric F1-layer heights under different geomagnetic activity conditions. We have found that at these heights during geomagnetic disturbances in all seasons the molecular component of the neutral composition of the thermosphere increases and the atomic component decreases. In comparison with 2014, [O₂]/[O] values increased by 2017 under quiet and disturbed geomagnetic conditions: up to 30 % and 20 % in summer and spring respectively; up to 10 % in winter and autumn. The [O]/[N₂] ratio decreased by an average of 15 % by 2017. The assumption has been confirmed that in summer under quiet geomagnetic conditions the relative molecular oxygen content [O₂]/[O] increases with decreasing solar activity.


Author(s):  
Norbert Jakowski ◽  
Mohammed Mainul Hoque

The shape of the vertical electron density profile is a result of production, loss and transportation of plasma in the Earth’s ionosphere. Therefore, the equivalent slab thickness of the ionosphere that characterizes the width of vertical electron density profiles is an important parameter for a better understanding of ionospheric processes under regular as well as under perturbed conditions. The equivalent slab thickness is defined by the ratio of the vertical total electron content over the peak electron density and is therefore easy to compute by utilizing powerful data sources nowadays available thanks to ground and space based GNSS techniques. Here we use peak electron density data from three low earth orbiting (LEO) satellite missions, namely CHAMP, GRACE and FORMOSAT-3/COSMIC, as well as total electron content data obtained from numerous GNSS ground stations. For the first time, we present a global model of the equivalent slab thickness (Neustrelitz equivalent Slab Thickness Model – NSTM). The model approach is similar to a family of former model approaches successfully applied for Total Electron Content (TEC), peak electron density NmF2 and corresponding height hmF2 at DLR. The model description focuses on an overall view of the behaviour of the equivalent slab thickness as a function of local time, season, geographic/geomagnetic location and solar activity on a global scale. In conclusion, the model agrees quite well with the overall observation data within a RMS range of 70 km. There is generally a good correlation with solar heat input that varies with local time, season and level of solar activity. However, under non-equilibrium conditions, plasma transport processes dominate the behaviour of the equivalent slab thickness. It is assumed that night-time plasmasphere-ionosphere coupling causes enhanced equivalent slab thickness values like the pre-sunrise enhancement. The overall fit provides consistent results with the mid-latitude bulge (MLB) of the equivalent slab thickness, described for the first time in this paper. Furthermore, the model recreates quite well ionospheric anomalies such as the Night-time Winter Anomaly (NWA) which is closely related to the Mid-latitude Summer Night Anomaly (MSNA) like the Weddell Sea Anomaly (WSA) and Okhotsk Sea Anomaly (OSA). Further model improvements can be achieved by using an extended model approach and considering the particular geomagnetic field structure.


2020 ◽  
Vol 6 (3) ◽  
pp. 110-114
Author(s):  
Galina Kushnarenko ◽  
Olga Yakovleva ◽  
Galina Kuznetsova

We have estimated seasonal variations in the main thermospheric gas components [O]/[N₂] and [O₂]/[O] for the period 2014–2017. We have used the well-known authoring technique and electron density measurements made with the Irkutsk digisonde (52° N, 104° E) at ionospheric F1-layer heights under different geomagnetic activity conditions. We have found that at these heights during geomagnetic disturbances in all seasons the molecular component of the neutral composition of the thermosphere increases and the atomic component decreases. In comparison with 2014, [O₂]/[O] values increased by 2017 under quiet and disturbed geomagnetic conditions: up to 30 % and 20 % in summer and spring respectively; up to 10 % in winter and autumn. The [O]/[N₂] ratio decreased by an average of 15 % by 2017. The assumption has been confirmed that in summer under quiet geomagnetic conditions the relative molecular oxygen content [O₂]/[O] increases with decreasing solar activity.


2021 ◽  
Vol 13 (8) ◽  
pp. 1559
Author(s):  
Fabricio S. Prol ◽  
M. Mainul Hoque

A 3D-model approach has been developed to describe the electron density of the topside ionosphere and plasmasphere based on Global Navigation Satellite System (GNSS) measurements onboard low Earth orbit satellites. Electron density profiles derived from ionospheric Radio Occultation (RO) data are extrapolated to the upper ionosphere and plasmasphere based on a linear Vary-Chap function and Total Electron Content (TEC) measurements. A final update is then obtained by applying tomographic algorithms to the slant TEC measurements. Since the background specification is created with RO data, the proposed approach does not require using any external ionospheric/plasmaspheric model to adapt to the most recent data distributions. We assessed the model accuracy in 2013 and 2018 using independent TEC data, in situ electron density measurements, and ionosondes. A systematic better specification was obtained in comparison to NeQuick, with improvements around 15% in terms of electron density at 800 km, 26% at the top-most region (above 10,000 km) and 26% to 55% in terms of TEC, depending on the solar activity level. Our investigation shows that the developed model follows a known variation of electron density with respect to geographic/geomagnetic latitude, altitude, solar activity level, season, and local time, revealing the approach as a practical and useful tool for describing topside ionosphere and plasmasphere using satellite-based GNSS data.


2014 ◽  
Vol 32 (2) ◽  
pp. 69-75 ◽  
Author(s):  
W. R. Coley ◽  
R. A. Stoneback ◽  
R. A. Heelis ◽  
M. R. Hairston

Abstract. The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamic Investigation (CINDI) instrument package on the Communication/Navigation Outage Forecast System (C/NOFS) spacecraft, has made over 5 yr of in situ measurements of plasma temperatures, composition, densities, and velocities in the 400–850 km altitude range of the equatorial ionosphere. These measured ion velocities are then transformed into a coordinate system with components parallel and perpendicular to the geomagnetic field allowing us to examine the zonal (horizontal and perpendicular to the geomagnetic field) component of plasma motion over the 2009–2012 interval. The general pattern of local time variation of the equatorial zonal ion velocity is well established as westward during the day and eastward during the night, with the larger nighttime velocities leading to a net ionospheric superrotation. Since the C/NOFS launch in April 2008, F10.7 cm radio fluxes have gradually increased from around 70 sfu to levels in the 130–150 sfu range. The comprehensive coverage of C/NOFS over the low-latitude ionosphere allows us to examine variations of the topside zonal ion velocity over a wide level of solar activity as well as the dependence of the zonal velocity on apex altitude (magnetic latitude), longitude, and solar local time. It was found that the zonal ion drifts show longitude dependence with the largest net eastward values in the American sector. The pre-midnight zonal drifts show definite solar activity (F10.7) dependence. The daytime drifts have a lower dependence on F10.7. The apex altitude (magnetic latitude) variations indicate a more westerly flow at higher altitudes. There is often a net topside subrotation at low F10.7 levels, perhaps indicative of a suppressed F region dynamo due to low field line-integrated conductivity and a low F region altitude at solar minimum.


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Birbal Singh ◽  
Devbrat Pundhir

<p>Employing a set of 3-component search coil magnetometer, Schumann resonance studies have been in progress at Agra (Geograph. lat. 27.2°N, long. 78°E), India since 01 April, 2007. We have analysed the data for two periods; first from 01 April, 2007 to 31 March, 2008 (period-I), and then from 01 March, 2011 to 29 February, 2012 (period-II) which correspond to pre and post periods of solar cycle minimum of 2008-2009. From the diurnal variation of first mode intensity and frequency, we study the seasonal variations of global thunderstorm activity, effective source distance and level of lightning during both the periods. We show that world thunderstorm activity shifts to summer in the northern hemisphere as the effective source distance approaches close to the observer, and the level of intense lightning shifts from the month of July, 2007 in period-I to August, 2011 in period-II. This is supported by Lightning Imaging Sensor (LIS) satellite data also. A possible explanation in terms of increasing solar activity is suggested.</p>


Sign in / Sign up

Export Citation Format

Share Document