solar local time
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 7 (4) ◽  
pp. 104-112
Author(s):  
Valery Denisenko ◽  
Andrey Lyakhov

Worldwide maps of lightning activity have been obtained from the ground-based World Wide Lightning Location Network (WWLLN) for 2007–2009. We have compiled these maps separately for different seasons and UT periods, using WWLLN data on the time and coordinates of each of the recorded lightning. The total number of flashes of lightning in WWLLN data is by an order of magnitude smaller than in satellite data from Optical Transient Detector and the Lightning Imaging Sensor satellites. However, the key features of the spatial distribution and seasonal trends coincide well. The main difference observed is the absence of diurnal variation (similar to Carnegie curve) in WWLLN data against the satellite one. This concerns the global lightning number as well as its density in major thunderstorm regions. The solar local time dependence is also weak in WWLLN data. We show that in 2007–2009 the mean latitude of lightning observation is shifted to the summer hemisphere up to 10° from the annual mean value. From the beginning of 2007 to the end of 2009, the global monthly average number of flashes of lightning increased threefold. We attribute this fact primarily to improved processing techniques in WWLLN. The constructed maps are necessary for numerical simulation of the Global Electric Circuit.


2021 ◽  
Vol 7 (4) ◽  
pp. 111-119
Author(s):  
Valery Denisenko ◽  
Andrey Lyakhov

Worldwide maps of lightning activity have been obtained from the ground-based World Wide Lightning Location Network (WWLLN) for 2007–2009. We have compiled these maps separately for different seasons and UT periods, using WWLLN data on the time and coordinates of each of the recorded lightning. The total number of flashes of lightning in WWLLN data is by an order of magnitude smaller than in satellite data from Optical Transient Detector and the Lightning Imaging Sensor satellites. However, the key features of the spatial distribution and seasonal trends coincide well. The main difference observed is the absence of diurnal variation (similar to Carnegie curve) in WWLLN data against the satellite one. This concerns the global lightning number as well as its density in major thunderstorm regions. The solar local time dependence is also weak in WWLLN data. We show that in 2007–2009 the mean latitude of lightning observation is shifted to the summer hemisphere up to 10° from the annual mean value. From the beginning of 2007 to the end of 2009, the global monthly average number of flashes of lightning increased threefold. We attribute this fact primarily to improved processing techniques in WWLLN. The constructed maps are necessary for numerical simulation of the Global Electric Circuit.


2021 ◽  
Vol 13 (22) ◽  
pp. 4578
Author(s):  
Dong L. Wu ◽  
Donald E. Jennings ◽  
Kwong-Kit Choi ◽  
Murzy D. Jhabvala ◽  
James A. Limbacher ◽  
...  

The demonstration of a newly developed compact thermal imager (CTI) on the International Space Station (ISS) has provided not only a technology advancement but a rich high-resolution dataset on global clouds, atmospheric and land emissions. This study showed that the free-running CTI instrument could be calibrated to produce scientifically useful radiance imagery of the atmosphere, clouds, and surfaces with a vertical resolution of ~460 m at limb and a horizontal resolution of ~80 m at nadir. The new detector demonstrated an excellent sensitivity to detect the weak limb radiance perturbations modulated by small-scale atmospheric gravity waves. The CTI’s high-resolution imaging was used to infer vertical cloud temperature profiles from a side-viewing geometry. For nadir imaging, the combined high-resolution and high-sensitivity capabilities allowed the CTI to better separate cloud and surface emissions, including those in the planetary boundary layer (PBL) that had small contrast against the background surface. Finally, based on the ISS’s orbit, the stable detector performance and robust calibration algorithm produced valuable diurnal observations of cloud and surface emissions with respect to solar local time during May–October 2019, when the CTI had nearly continuous operation.


2020 ◽  
Author(s):  
Vera Yesutor Tsali-Brown ◽  
Paulo Roberto Fagundes ◽  
Ana Roberta Paulino ◽  
Valdir Gil Pillat ◽  
Maurício José Alves Bolzam

<p><strong>Abstract</strong></p><p>Geomagnetic field variations in 2018 due to solar and lunar tides in the Brazilian sector were studied using data provided by magnetometers installed at São José dos Campos (23.21<sup>o</sup>S, 0345.97<sup>o</sup>W; Dip latitude 20.9<sup>o</sup>S), Eusébio, Ceará (3.89° S, 38.46° W) and São Luís, Maranhão (2.53° S, 44.30° W). Variations associated with these tides were identified using the horizontal component of the geomagnetic field, H(nT). Least square fit method was employed in determining the monthly amplitudes and phases of the diurnal, semidiurnal and ter-diurnal solar tides. The monthly amplitudes and phases of the lunar tide were then calculated using the residual measurements (obtained after subtracting the solar tidal components from each day), converting the solar local time to lunar time and subjecting the residuals to harmonic analysis. The maximum solar tide amplitude recorded was 23.96nT(diurnal) in March, at Eusébio whereas the minimum amplitude was 0.45nT(terdiurnal) recorded in December at São José dos Campos. The lunar tide recorded a maximum amplitude of 4.33nT(semidiurnal) in February, at São Luís and a minimum amplitude of 0.13nT(diurnal) in August, at Eusébio.</p><p> </p><p> </p><p><strong>Keywords</strong>: Solar tides, Lunar tides, Geomagnetic field, Magnetometer.</p><p> </p>


2020 ◽  
Author(s):  
Changsup Lee ◽  
Geonhwa Jee ◽  
Qian Wu ◽  
Jeong-Han Kim ◽  
Hosik Kam ◽  
...  

<p>Neutral winds in the mesosphere and lower thermosphere (MLT) have been simultaneously observed by Fabry-Perot interferometer (FPI) and meteor radar (MR) at King Sejong Station (KSS), Antarctica from 2017. Because  the airglow emission height sensitively varies with a solar local time and a season, it is not possible to precisely determine what altitude airglow emission occurs from the traditional assumption of fixed airglow layers. Even though a few previous studies suggested representative heights of airglow emission such as OH band and 557.7 nm line, the true height information of these emission are still unknown. In this study, we try to figure out the temporal dependence of the airglow emissions using the KSS FPI and satellite (SABER/MLS) measurements. We also perform a direct comparison between the FPI and the meteor radar wind measurements considering time-varying airglow emission properties based on a correlation analysis. This study presents how the background wind structure can affect wind estimates from the airglow emissions.</p>


2020 ◽  
Vol 19 ◽  

- In this paper we present the in orbit performance during the initial attitude acquisition, immediately after separation from the final stage of the launcher, until the satellite converges toward a sun pointing. On 12th july 2010 ALSAT-2A microsatellite was launched into a 670 km sun synchronous orbit, with a solar local time at an ascending node of 22h15. In the initial acquisition mode or even in the safe mode, only sun sensors and magnetometer are used for attitude determination. Knowing that, the satellite once is separated from the launcher it starts tumbling. So, as to detumble the satellite, a strategy consisting of three phases is set. The first phase consists on reducing the velocity using only the magnetorquers, until reaching the threshold angular momentum of 0.05 Nms, once this is done, the second phase is automatically enabled in such a way, the four reaction wheels are ON and speed up to get an angular momentum of -0.15 Nms along the satellite x-axis. At the end of this phase the satellite is completely detumbled and a third phase is carried out, in which the satellite minus X axis is pointed toward sun with a small rotation.


2014 ◽  
Vol 32 (2) ◽  
pp. 69-75 ◽  
Author(s):  
W. R. Coley ◽  
R. A. Stoneback ◽  
R. A. Heelis ◽  
M. R. Hairston

Abstract. The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamic Investigation (CINDI) instrument package on the Communication/Navigation Outage Forecast System (C/NOFS) spacecraft, has made over 5 yr of in situ measurements of plasma temperatures, composition, densities, and velocities in the 400–850 km altitude range of the equatorial ionosphere. These measured ion velocities are then transformed into a coordinate system with components parallel and perpendicular to the geomagnetic field allowing us to examine the zonal (horizontal and perpendicular to the geomagnetic field) component of plasma motion over the 2009–2012 interval. The general pattern of local time variation of the equatorial zonal ion velocity is well established as westward during the day and eastward during the night, with the larger nighttime velocities leading to a net ionospheric superrotation. Since the C/NOFS launch in April 2008, F10.7 cm radio fluxes have gradually increased from around 70 sfu to levels in the 130–150 sfu range. The comprehensive coverage of C/NOFS over the low-latitude ionosphere allows us to examine variations of the topside zonal ion velocity over a wide level of solar activity as well as the dependence of the zonal velocity on apex altitude (magnetic latitude), longitude, and solar local time. It was found that the zonal ion drifts show longitude dependence with the largest net eastward values in the American sector. The pre-midnight zonal drifts show definite solar activity (F10.7) dependence. The daytime drifts have a lower dependence on F10.7. The apex altitude (magnetic latitude) variations indicate a more westerly flow at higher altitudes. There is often a net topside subrotation at low F10.7 levels, perhaps indicative of a suppressed F region dynamo due to low field line-integrated conductivity and a low F region altitude at solar minimum.


1974 ◽  
Vol 79 (16) ◽  
pp. 2493-2495 ◽  
Author(s):  
Robert A. Langel ◽  
Leif Svalgaard

Sign in / Sign up

Export Citation Format

Share Document