Investigation on corrosion failure of Cr–Mo P11 grade pipe in primary section of a superheated steam generation system

2017 ◽  
Vol 55 (1) ◽  
pp. 139-144 ◽  
Author(s):  
M. Sabouri ◽  
H. R. Faridi
TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


Author(s):  
Jose´ C. Veiga ◽  
Carlos F. Cipolatti ◽  
Ana M. Furtado

This paper presents a Superheated Steam Test Rig and a Test Procedure for Compressed Non-Asbestos (CNA) Gaskets qualification. The Test Rig is a versatile assembly that can use different flange sizes and heating systems. It simulates a Superheated Steam Boiler with a water feed pump, pressurized water tank, pressure relief valve, condenser and the flange pair acting as the Steam generation unit. Heating can be provided by an oven or heating element bands. The Test Protocol enables the evaluation of the gasket performance in Superheated Steam in severe operational conditions like high pressure and temperature with thermal cycling. Different types of non-asbestos compressed gaskets were tested monitoring the leak rate and bolt load at each thermal cycle.


2013 ◽  
Vol 33 ◽  
pp. 2-17 ◽  
Author(s):  
Thibault Henrion ◽  
Karl Ponweiser ◽  
Dirk Band ◽  
Thomas Telgen

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1720 ◽  
Author(s):  
Xiaolei Li ◽  
Zhifeng Wang ◽  
Ershu Xu ◽  
Linrui Ma ◽  
Li Xu ◽  
...  

A thermal energy storage system is a critical component in concentrating solar power plants (CSPP), owing to which concentrating solar power (CSP) has superiorities over photovoltaic and wind power. Currently, the sole thermal energy storage (TES) system which is commercially applied to parabolic trough solar power (PTSP) plants worldwide is the two-tank indirect TES. In this study, the dynamic models of a solar field (SF), a two-tank indirect TES system, and a steam generation system (SGS) in a PTSP plant were developed and validated. Control and operation strategies on a clear day and a cloudy day were provided, and the dynamic simulations of the coupled operation using actual meteorological data were conducted. The influence of the two-tank indirect TES system on the dynamic characteristics of SGS on a system level was analyzed. Other key parameter variations were also presented. The results show that during the transition from the charge to the discharge process, the steam parameters slowly decrease. The variation of the molten salt height is further affected by the molten salt mass flow rate at the inlet and outlet of the molten salt tank. We adopted the PI control to adjust the thermal oil mass flow rate, thermal oil temperature, and water height. The developed dynamic models are useful in guiding system operation and control.


2018 ◽  
Vol 96 (10) ◽  
pp. 2086-2099 ◽  
Author(s):  
Chao Xu ◽  
Qian Yang ◽  
Fuxian Wang ◽  
Xiaoming Fang ◽  
Zhengguo Zhang

1980 ◽  
Vol 102 (1) ◽  
pp. 202-208 ◽  
Author(s):  
A. Ray ◽  
D. A. Berkowitz ◽  
V. H. Sumaria

A dynamic model of an atmospheric pressure fluidized-bed steam generation system is presented which allows digital simulation and analytical controller design. The nonlinear, time-invariant, deterministic, continuous-time model is derived in state-space form from conservation relations, empirical correlations and system design data. The model has been verified for steady-state and transient performance with measured data from experimental test runs. Transient responses of several process variables, following independent step disturbances in coal feed rate and air flow, are illustrated.


Sign in / Sign up

Export Citation Format

Share Document