An investigation into heat transfer for a pulsating laminar flow in a rectangular channel with a boundary condition of the first kind

2017 ◽  
Vol 55 (4) ◽  
pp. 622-625 ◽  
Author(s):  
E. P. Valueva ◽  
M. S. Purdin
2022 ◽  
Vol 8 ◽  
pp. 539-550
Author(s):  
Abdul Hamid Ganie ◽  
Abid A. Memon ◽  
M. Asif Memon ◽  
A.M. Al-Bugami ◽  
Kaleemullah Bhatti ◽  
...  

Author(s):  
Abhijit S. Paranjape ◽  
Ninad C. Maniar ◽  
Deval A. Pandya ◽  
Brian H. Dennis

Heat transfer augmentation techniques have gained great importance in different engineering applications to deal with thermal management issues. In this work, a numerical investigation was carried out to see the effects of a modified surface on the heat transfer enhancement compared to a smooth surface. In the first case, spherical dimple arrays were applied to the surface. The effects were observed for dimples on the bottom wall of a channel for a laminar airflow. The effects of a 21×7 staggered array and a 19×4 inline array on the bottom wall were investigated. In the second case, the heat exchange enhancement in a rectangular channel using longitudinal vortex generators (LVG) for a laminar flow was considered. In both cases, a 3D steady viscous computational fluid dynamics package with an unstructured grid was used to compute the flow and temperature field. The heat transfer characteristics were studied as a function of the Reynolds number based on the hydraulic diameter of the channel. The heat transfer was quantified by computing the surface averaged Nusselt number. The pressure drop and flow characteristics were also calculated. The Nusselt number was compared with that of a smooth channel without surface modification to assess the level of heat transfer enhancement.


Author(s):  
Mei Wang ◽  
Yan Wen ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
Weifeng Ni

The purpose of this study is to discover the differences of pressure drop and heat transfer of single-phase water flow between conventional channels and narrow rectangular channels. Furthermore, the differences between the level and the vertical channel have been studied. The gap of the test channel is 1.8mm. Compared with conventional channels, the narrow rectangular channel showed differences in both flow and heat transfer characteristics. The critical Reynolds number of transition from laminar flow to turbulent flow is 900∼1300, which is smaller compared with conventional channels. The friction factor is larger than that of the conventional channels and the correlation of friction factor with Reynolds number was given by experimental results. From the relation graph of Nusselt number and Reynolds number, the demarcation of the laminar flow region and turbulence flow region is obvious. In laminar region, Nusselt number almost remained constant and approximately consistent with numerical simulation results. While in turbulent region, Nusselt number increased significantly with increasing Reynolds number. A new Nusselt number correlation was obtained based on Dittus-Boelter equation, and the coefficients were less about 13% than that of Dittus-Boelter equation.


Sign in / Sign up

Export Citation Format

Share Document