Identification and Counting of Erythrocytes of Native Human Donor Blood by Digital Optical Microscopy Using Spectral Filtered Illumination

Author(s):  
V. A. Dubrovskii ◽  
I. V. Zabenkov ◽  
E. P. Karpocheva ◽  
S. O. Torbin
PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8489 ◽  
Author(s):  
Nobuko Yamanaka ◽  
Christine J. Wong ◽  
Marina Gertsenstein ◽  
Robert F. Casper ◽  
Andras Nagy ◽  
...  

1978 ◽  
Vol 7 (1) ◽  
pp. 52-54
Author(s):  
G L Dorn ◽  
K Smith

A single-tube blood culture device designed for centrifugation in a tabletop centrifuge is described. Reconstruction experiments using 21 different organisms and human donor blood indicate that excellent recovery can be obtained by centrifugation for 30 min at 3,000 X g.


Author(s):  
D. J. Barber ◽  
R. G. Evans

Manganese (II) oxide, MnO, in common with CoO, NiO and FeO, possesses the NaCl structure and shows antiferromagnetism below its Neel point, Tn∼ 122 K. However, the defect chemistry of the four oxides is different and the magnetic structures are not identical. The non-stoichiometry in MnO2 small (∼2%) and below the Tn the spins lie in (111) planes. Previous work reported observations of magnetic features in CoO and NiO. The aim of our work was to find explanations for certain resonance results on antiferromagnetic MnO.Foils of single crystal MnO were prepared from shaped discs by dissolution in a mixture of HCl and HNO3. Optical microscopy revealed that the etch-pitted foils contained cruciform-shaped precipitates, often thick and proud of the surface but red-colored when optically transparent (MnO is green). Electron diffraction and probe microanalysis indicated that the precipitates were Mn2O3, in contrast with recent findings of Co3O4 in CoO.


Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quaity positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).The problem for many researchers, however, is that they have perfectly serviceable microscopes that they routinely use that have no digital imaging capabilities with little hope of purchasing a new instrument.


1996 ◽  
Vol 444 ◽  
Author(s):  
Maarten P. de Boer ◽  
Terry A. Michalske

AbstractWe have measured autoadhesion (e.g. stiction) of individual polysilicon beams by interferometric optical microscopy. Untreated cantilever beams were dried from water in air, while treated beams were coated with a hydrophobic molecular coating of octadecyltrichlorosilane (ODTS). Adhesion values obtained for beams adhered to the substrate over a long length (large d) are independent of beam length with values of 16.7 and 4.4 mJ/m2 for untreated and treated samples respectively. These values can be understood in terms of differences in surface chemistry and polysilicon roughness. Using the shortest length beam which remains attached to the substrate, adhesion values were 280 and 16 mJ/m2 respectively. These higher values may be a result of capillarity effects. We recommend that measurements be made on beams in which d is large, in contrast to the current practice of noting the shortest beam adhered.


Sign in / Sign up

Export Citation Format

Share Document