Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles

2017 ◽  
Vol 118 (6) ◽  
pp. 528-534 ◽  
Author(s):  
Y. D. Qu ◽  
X. L. Liang ◽  
X. Q. Kong ◽  
W. J. Zhang
2014 ◽  
Vol 28 (19) ◽  
pp. 1450157 ◽  
Author(s):  
Kai-Tuo Huo ◽  
Xiao-Ming Chen

Size-dependent melting temperature of metallic nanoparticles is studied theoretically based on cohesive energy. Three factors are introduced in the present model. The k factor, i.e. efficiency of space filling of crystal lattice is defined as the ratio between the volume of the atoms in a crystal cell and that of the crystal cell. The β factor is defined as the ratio between the cohesive energy of surface atom and interior atom of a crystal. The qs factor represents the packing fraction on a surface crystalline plane. Considering the β, qs and k factors, the relationship between melting temperature and nanoparticle size is discussed. The obtained model is compared with the reported experimental data and the other models.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Manauwar Ali Ansari

AbstractIn this paper, a new theoretical two-phase (solid–liquid) type model of melting temperature has developed based on the modified Gibbs–Thomson equation. Further, it is extended to derive other different size-dependent thermodynamic properties such as cohesive energy, Debye temperature, specific heat capacity, the thermal and electrical conductivity of metallic nanoparticles. Quantitative calculation of the effect of size on thermodynamic properties resulted in, varying linearly with the inverse of characteristic length of nanomaterials. The models are applied to Al, Pb, Ag, Sn, Mo, W, Co, Au and Cu nanoparticles of spherical shape. The melting temperature, Debye temperature, thermal and electrical conductivity are found to decrease with the decrease in particle size, whereas the cohesive energy and specific heat capacity are increased with the decrease in particle size. The present model is also compared with previous models and found consistent. The results obtained with this model validated with experimental and simulation results from several sources that show similar trends between the model and experimental results. Graphic abstract


2007 ◽  
Vol 06 (06) ◽  
pp. 461-466 ◽  
Author(s):  
T. BARAKAT ◽  
O. M. Al-DOSSARY ◽  
A. A. ALHARBI

We investigate the effect of Mie-type potential range on the cohesive energy of metallic nanoparticles using the size-dependent potential parameters method. The predicted cohesive energy for different cubic structures is observed to decrease with decreasing the particle size, and increase with decreasing the range of the interatomic potential, a result which is in the right direction at least to predict the experimental values of Molybdenum and Tungsten nanoparticles.


2019 ◽  
Vol 9 (15) ◽  
pp. 3083
Author(s):  
Kai-Jian Huang ◽  
Shui-Jie Qin ◽  
Zheng-Ping Zhang ◽  
Zhao Ding ◽  
Zhong-Chen Bai

We develop a theoretical approach to investigate the impact that nonlocal and finite-size effects have on the dielectric response of plasmonic nanostructures. Through simulations, comprehensive comparisons of the electron energy loss spectroscopy (EELS) and the optical performance are discussed for a gold spherical dimer system in terms of different dielectric models. Our study offers a paradigm of high efficiency compatible dielectric theoretical framework for accounting the metallic nanoparticles behavior combining local, nonlocal and size-dependent effects in broader energy and size ranges. The results of accurate analysis and simulation for these effects unveil the weight and the evolution of both surface and bulk plasmons vibrational mechanisms, which are important for further understanding the electrodynamics properties of structures at the nanoscale. Particularly, our method can be extended to other plasmonic nanostructures where quantum-size or strongly interacting effects are likely to play an important role.


2015 ◽  
Vol 119 (21) ◽  
pp. 11929-11933 ◽  
Author(s):  
Zhiyuan Liu ◽  
Xiaohong Sui ◽  
Kai Kang ◽  
Shaojing Qin

2020 ◽  
Vol 124 (5) ◽  
pp. 3403-3409
Author(s):  
Hongxin Ma ◽  
Panpan Gao ◽  
Ping Qian ◽  
Yanjing Su

Sign in / Sign up

Export Citation Format

Share Document